1
|
Cartesian vs radial MR-STAT: An efficiency and robustness study. Magn Reson Imaging 2023; 99:7-19. [PMID: 36709010 DOI: 10.1016/j.mri.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
MR Spin TomogrAphy in Time-domain ("MR-STAT") is quantitative MR technique in which multiple quantitative parameters are estimated from a single short scan by solving a large-scale non-linear optimization problem. In this work we extended the MR-STAT framework to non-Cartesian gradient trajectories. Cartesian MR-STAT and radial MR-STAT were compared in terms of time-efficiency and robustness in simulations, gel phantom measurements and in vivo measurements. In simulations, we observed that both Cartesian and radial MR-STAT are highly robust against undersampling. Radial MR-STAT does have a lower spatial encoding power because the outer corners of k-space are never sampled. However, especially in T2, this is compensated by a higher dynamic encoding power that comes from sampling the k-space center with each readout. In gel phantom measurements, Cartesian MR-STAT was observed to be robust against overfitting whereas radial MR-STAT suffered from high-frequency artefacts in the parameter maps at later iterations. These artefacts are hypothesized to be related to hardware imperfections and were (partially) suppressed with image filters. The time-efficiencies were higher for Cartesian MR-STAT in all vials. In-vivo, the radial reconstruction again suffered from overfitting artefacts. The robustness of Cartesian MR-STAT over the entire range of experiments may make it preferable in a clinical setting, despite radial MR-STAT resulting in a higher T1 time-efficiency in white matter.
Collapse
|
2
|
Chen Y, Lu L, Zhu T, Ma D. Technical overview of magnetic resonance fingerprinting and its applications in radiation therapy. Med Phys 2021; 49:2846-2860. [PMID: 34633687 DOI: 10.1002/mp.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is an emerging imaging technique for rapid and simultaneous quantification of multiple tissue properties. The technique has been developed for quantitative imaging of different organs. The obtained quantitative measures have the potential to improve multiple steps of a typical radiotherapy workflow and potentially further improve integration of magnetic resonance imaging guided clinical decision making. In this review paper, we first provide a technical overview of the MRF method from data acquisition to postprocessing, along with recent development in advanced reconstruction methods. We further discuss critical aspects that could influence its usage in radiation therapy, such as accuracy and precision, repeatability and reproducibility, geometric distortion, and motion robustness. Finally, future directions for MRF application in radiation therapy are discussed.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lan Lu
- Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tong Zhu
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Ding H, Velasco C, Ye H, Lindner T, Grech-Sollars M, O’Callaghan J, Hiley C, Chouhan MD, Niendorf T, Koh DM, Prieto C, Adeleke S. Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:4742. [PMID: 34638229 PMCID: PMC8507535 DOI: 10.3390/cancers13194742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment.
Collapse
Affiliation(s)
- Hao Ding
- Imperial College School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Huihui Ye
- State Key Laboratory of Modern Optical instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| | - Matthew Grech-Sollars
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Surrey GU2 7XX, UK;
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - James O’Callaghan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Crispin Hiley
- Cancer Research UK, Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK;
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Manil D. Chouhan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck, Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SM2 5NG, UK;
- Department of Radiology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Sola Adeleke
- High Dimensional Neurology Group, Queen’s Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Oncology, Guy’s & St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
4
|
Mostardeiro TR, Panda A, Campeau NG, Witte RJ, Larson NB, Sui Y, Lu A, McGee KP. Whole brain 3D MR fingerprinting in multiple sclerosis: a pilot study. BMC Med Imaging 2021; 21:88. [PMID: 34022832 PMCID: PMC8141188 DOI: 10.1186/s12880-021-00620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background MR fingerprinting (MRF) is a novel imaging method proposed for the diagnosis of Multiple Sclerosis (MS). This study aims to determine if MR Fingerprinting (MRF) relaxometry can differentiate frontal normal appearing white matter (F-NAWM) and splenium in patients diagnosed with MS as compared to controls and to characterize the relaxometry of demyelinating plaques relative to the time of diagnosis. Methods Three-dimensional (3D) MRF data were acquired on a 3.0T MRI system resulting in isotropic voxels (1 × 1 × 1 mm3) and a total acquisition time of 4 min 38 s. Data were collected on 18 subjects paired with 18 controls. Regions of interest were drawn over MRF-derived T1 relaxometry maps encompassing selected MS lesions, F-NAWM and splenium. T1 and T2 relaxometry features from those segmented areas were used to classify MS lesions from F-NAWM and splenium with T-distributed stochastic neighbor embedding algorithms. Partial least squares discriminant analysis was performed to discriminate NAWM and Splenium in MS compared with controls. Results Mean out-of-fold machine learning prediction accuracy for discriminant results between MS patients and controls for F-NAWM was 65 % (p = 0.21) and approached 90 % (p < 0.01) for the splenium. There was significant positive correlation between time since diagnosis and MS lesions mean T2 (p = 0.015), minimum T1 (p = 0.03) and negative correlation with splenium uniformity (p = 0.04). Perfect discrimination (AUC = 1) was achieved between selected features from MS lesions and F-NAWM. Conclusions 3D-MRF has the ability to differentiate between MS and controls based on relaxometry properties from the F-NAWM and splenium. Whole brain coverage allows the assessment of quantitative properties within lesions that provide chronological assessment of the time from MS diagnosis.
Collapse
Affiliation(s)
| | - Ananya Panda
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Norbert G Campeau
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Robert J Witte
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Yi Sui
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Aiming Lu
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| |
Collapse
|
5
|
Whole-brain 3D MR fingerprinting brain imaging: clinical validation and feasibility to patients with meningioma. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:697-706. [PMID: 33945050 PMCID: PMC8421277 DOI: 10.1007/s10334-021-00924-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/12/2022]
Abstract
Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.
Collapse
|
6
|
Accelerated 3D whole-brain T1, T2, and proton density mapping: feasibility for clinical glioma MR imaging. Neuroradiology 2021; 63:1831-1851. [PMID: 33835238 PMCID: PMC8528802 DOI: 10.1007/s00234-021-02703-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/28/2021] [Indexed: 12/04/2022]
Abstract
Purpose Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. Methods To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II–IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. Results The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. Conclusion 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.
Collapse
|
7
|
Buonincontri G, Kurzawski JW, Kaggie JD, Matys T, Gallagher FA, Cencini M, Donatelli G, Cecchi P, Cosottini M, Martini N, Frijia F, Montanaro D, Gómez PA, Schulte RF, Retico A, Tosetti M. Three dimensional MRF obtains highly repeatable and reproducible multi-parametric estimations in the healthy human brain at 1.5T and 3T. Neuroimage 2021; 226:117573. [PMID: 33221451 DOI: 10.1016/j.neuroimage.2020.117573] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is highly promising as a quantitative MRI technique due to its accuracy, robustness, and efficiency. Previous studies have found high repeatability and reproducibility of 2D MRF acquisitions in the brain. Here, we have extended our investigations to 3D MRF acquisitions covering the whole brain using spiral projection k-space trajectories. Our travelling head study acquired test/retest data from the brains of 12 healthy volunteers and 8 MRI systems (3 systems at 3 T and 5 at 1.5 T, all from a single vendor), using a study design not requiring all subjects to be scanned at all sites. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived PD T1 and T2 maps to an anatomical atlas, coefficients of variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated a high repeatability (CVs 0.7-1.3% for T1, 2.0-7.8% for T2, 1.4-2.5% for normalized PD) and reproducibility (CVs of 2.0-5.8% for T1, 7.4-10.2% for T2, 5.2-9.2% for normalized PD) in gray and white matter. Both repeatability and reproducibility improved when compared to similar experiments using 2D acquisitions. Three-dimensional MRF obtains highly repeatable and reproducible estimations of T1 and T2, supporting the translation of MRF-based fast quantitative imaging into clinical applications.
Collapse
Affiliation(s)
| | - Jan W Kurzawski
- IRCCS Stella Maris, Pisa, Italy; National Institute for Nuclear Physics (INFN), Pisa, Italy
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Tomasz Matys
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Matteo Cencini
- IRCCS Stella Maris, Pisa, Italy; Imago7 Foundation, Pisa, Italy
| | - Graziella Donatelli
- Imago7 Foundation, Pisa, Italy; U.O. Neuroradiologia, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy
| | - Paolo Cecchi
- U.O. Neuroradiologia, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy
| | - Mirco Cosottini
- Imago7 Foundation, Pisa, Italy; U.O. Neuroradiologia, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nicola Martini
- U.O.C. Bioingegneria e Ing. Clinica, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Francesca Frijia
- U.O.C. Bioingegneria e Ing. Clinica, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Domenico Montanaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa-Massa, Italy
| | - Pedro A Gómez
- Imago7 Foundation, Pisa, Italy; Technical University of Munich, Munich, Germany
| | | | | | - Michela Tosetti
- IRCCS Stella Maris, Pisa, Italy; Imago7 Foundation, Pisa, Italy.
| |
Collapse
|
8
|
Gómez PA, Cencini M, Golbabaee M, Schulte RF, Pirkl C, Horvath I, Fallo G, Peretti L, Tosetti M, Menze BH, Buonincontri G. Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging. Sci Rep 2020; 10:13769. [PMID: 32792618 PMCID: PMC7427097 DOI: 10.1038/s41598-020-70789-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5 T and 3 T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2 and 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 min. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.
Collapse
Affiliation(s)
- Pedro A Gómez
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| | - Matteo Cencini
- Imago7 Foundation, Pisa, Italy
- IRCCS Stella Maris, Pisa, Italy
| | | | | | - Carolin Pirkl
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- GE Healthcare, Munich, Germany
| | - Izabela Horvath
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- GE Healthcare, Munich, Germany
| | - Giada Fallo
- University of Pisa, Pisa, Italy
- Imago7 Foundation, Pisa, Italy
| | - Luca Peretti
- University of Pisa, Pisa, Italy
- Imago7 Foundation, Pisa, Italy
| | - Michela Tosetti
- Imago7 Foundation, Pisa, Italy
- IRCCS Stella Maris, Pisa, Italy
| | - Bjoern H Menze
- Computer Science, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
9
|
Kurzawski JW, Cencini M, Peretti L, Gómez PA, Schulte RF, Donatelli G, Cosottini M, Cecchi P, Costagli M, Retico A, Tosetti M, Buonincontri G. Retrospective rigid motion correction of three-dimensional magnetic resonance fingerprinting of the human brain. Magn Reson Med 2020; 84:2606-2615. [PMID: 32368835 DOI: 10.1002/mrm.28301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To obtain three-dimensional (3D), quantitative and motion-robust imaging with magnetic resonance fingerprinting (MRF). METHODS Our acquisition is based on a 3D spiral projection k-space scheme. We compared different orderings of trajectory interleaves in terms of rigid motion-correction robustness. In all tested orderings, we considered the whole dataset as a sum of 56 segments of 7-s duration, acquired sequentially with the same flip angle schedule. We performed a separate image reconstruction for each segment, producing whole-brain navigators that were aligned to the first segment using normalized correlation. The estimated rigid motion was used to correct the k-space data, and the aligned data were matched with the dictionary to obtain motion-corrected maps. RESULTS A significant improvement on the motion-affected maps after motion correction is evident with the suppression of motion artifacts. Correlation with the motionless baseline improved by 20% on average for both T1 and T2 estimations after motion correction. In addition, the average motion-induced quantification bias of 70 ms for T1 and 18 ms for T2 values was reduced to 12 ms and 6 ms, respectively, improving the reliability of quantitative estimations. CONCLUSION We established a method that allows correcting 3D rigid motion on a 7-s timescale during the reconstruction of MRF data using self-navigators, improving the image quality and the quantification robustness.
Collapse
Affiliation(s)
- Jan W Kurzawski
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy.,Imago7 Foundation, Pisa, Italy
| | - Matteo Cencini
- Imago7 Foundation, Pisa, Italy.,IRCCS Stella Maris, Pisa, Italy
| | - Luca Peretti
- Imago7 Foundation, Pisa, Italy.,Department of Physics, University of Pisa, Pisa, Italy
| | - Pedro A Gómez
- Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | | | - Graziella Donatelli
- Imago7 Foundation, Pisa, Italy.,Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Mirco Cosottini
- Imago7 Foundation, Pisa, Italy.,Department of Physics, University of Pisa, Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Mauro Costagli
- Imago7 Foundation, Pisa, Italy.,IRCCS Stella Maris, Pisa, Italy
| | - Alessandra Retico
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy
| | - Michela Tosetti
- Imago7 Foundation, Pisa, Italy.,IRCCS Stella Maris, Pisa, Italy
| | | |
Collapse
|
10
|
McGivney DF, Boyacioğlu R, Jiang Y, Poorman ME, Seiberlich N, Gulani V, Keenan KE, Griswold MA, Ma D. Magnetic resonance fingerprinting review part 2: Technique and directions. J Magn Reson Imaging 2020; 51:993-1007. [PMID: 31347226 PMCID: PMC6980890 DOI: 10.1002/jmri.26877] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a general framework to quantify multiple MR-sensitive tissue properties with a single acquisition. There have been numerous advances in MRF in the years since its inception. In this work we highlight some of the recent technical developments in MRF, focusing on sequence optimization, modifications for reconstruction and pattern matching, new methods for partial volume analysis, and applications of machine and deep learning. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:993-1007.
Collapse
Affiliation(s)
- Debra F. McGivney
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rasim Boyacioğlu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yun Jiang
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan E. Poorman
- Department of Physics, University of Colorado Boulder, Boulder, Colorado, USA
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Mark A. Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med 2019; 81:3530-3543. [PMID: 30720209 PMCID: PMC6492150 DOI: 10.1002/mrm.27665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/03/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Develop a sparse and locally low rank (LLR) regularized reconstruction to accelerate MR fingerprinting (MRF). METHODS Recent works have introduced low rank reconstructions to MRF, based on temporal compression operators learned from the MRF dictionary. In other MR applications, LLR regularization has been introduced to exploit temporal redundancy in local regions of the image. Here, we propose to include spatial sparsity and LLR regularization terms in the MRF reconstruction. This approach, so called SLLR-MRF, further reduces aliasing in the time-point images and enables higher acceleration factors. The proposed approach was evaluated in simulations, T1 /T2 phantom acquisition, and in vivo brain acquisitions in 5 healthy subjects with different undersampling factors. Acceleration was also used in vivo to enable acquisitions with higher in-plane spatial resolution in comparable scan time. RESULTS Simulations, phantom, and in vivo results show that low rank MRF reconstructions with high acceleration factors (<875 time-point images, 1 radial spoke per time-point) have residual aliasing artifacts that propagate into the parametric maps. The artifacts are reduced with the proposed SLLR-MRF resulting in considerable improvements in precision, without changes in accuracy. In vivo results show improved parametric maps for the proposed SLLR-MRF, potentially enabling MRF acquisitions with 1 radial spoke per time-point in approximately 2.6 s (~600 time-point images) for 2 × 2 mm and 9.6 s (1750 time-point images) for 1 × 1 mm in-plane resolution. CONCLUSION The proposed SLLR-MRF reconstruction further improves parametric map quality compared with low rank MRF, enabling shorter scan times and/or increased spatial resolution.
Collapse
Affiliation(s)
- Gastão Lima da Cruz
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Aurélien Bustin
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Oliver Jaubert
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | | | - René M. Botnar
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de ChileEscuela de IngenieríaSantiagoChile
| | - Claudia Prieto
- King’s College LondonSchool of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| |
Collapse
|
12
|
Cruz G, Jaubert O, Schneider T, Botnar RM, Prieto C. Rigid motion-corrected magnetic resonance fingerprinting. Magn Reson Med 2019; 81:947-961. [PMID: 30229558 PMCID: PMC6519164 DOI: 10.1002/mrm.27448] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Develop a method for rigid body motion-corrected magnetic resonance fingerprinting (MRF). METHODS MRF has shown some robustness to abrupt motion toward the end of the acquisition. Here, we study the effects of different types of rigid body motion during the acquisition on MRF and propose a novel approach to correct for this motion. The proposed method (MC-MRF) follows 4 steps: (1) sliding window reconstruction is performed to produce high-quality auxiliary dynamic images; (2) rotation and translation motion is estimated from the dynamic images by image registration; (3) estimated motion is used to correct acquired k-space data with corresponding rotations and phase shifts; and (4) motion-corrected data are reconstructed with low-rank inversion. MC-MRF was validated in a standard T1 /T2 phantom and 2D in vivo brain acquisitions in 7 healthy subjects. Additionally, the effect of through-plane motion in 2D MC-MRF was investigated. RESULTS Simulation results show that motion in MRF can introduce artifacts in T1 and T2 maps, depending when it occurs. MC-MRF improved parametric map quality in all phantom and in vivo experiments with in-plane motion, comparable to the no-motion ground truth. Reduced parametric map quality, even after motion correction, was observed for acquisitions with through-plane motion, particularly for smaller structures in T2 maps. CONCLUSION Here, a novel method for motion correction in MRF (MC-MRF) is proposed, which improves parametric map quality and accuracy in comparison to no-motion correction approaches. Future work will include validation of 3D MC-MRF to enable also through-plane motion correction.
Collapse
Affiliation(s)
- Gastão Cruz
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Olivier Jaubert
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | | | - Rene M. Botnar
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| | - Claudia Prieto
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| |
Collapse
|