1
|
de Meireles PB, de Miranda DC, de Moura AG, Ribeiro WC, Oliveira ÂQ, Leite LB, Forte P, Ribeiro L, Encarnação SG, Guimarães-Ervilha LO, Machado-Neves M, E Dias MM, Campos IX, Reis ECC, Peluzio MDCG, Natali AJ, Lavorato VN. Euterpe Oleracea Martius (Açaí) Extract and Resistance Exercise Modulate Cardiac Parameters of Hypertensive Rats. Life (Basel) 2024; 14:1101. [PMID: 39337885 PMCID: PMC11433082 DOI: 10.3390/life14091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The study evaluated the effects of resistance exercise training and açaí supplementation on cardiac parameters in hypertensive animals. METHODS For this study, rats from the Wistar and SHR lines (spontaneously hypertensive rats) were used. The animals were divided into 5 groups: Wistar Control (C); Control Hypertensive (H); Trained Hypertensive (HT); Hypertensive and Supplemented with Açaí (HA); and Hypertensive Trained and Supplemented with Açaí (HAT). Resistance exercise training was carried out through climbing. The supplemented groups received 3 g of açaí/kg of body mass. The animals' systolic blood pressure (SBP), body mass, and physical test were measured at the beginning and end of the intervention. At the end, an echocardiographic analysis was performed. Histological analysis and oxidative stress of the LV were performed. RESULTS It was found that hypertensive animals showed an increase in SBP, and the treatments reduced this parameter. The trained groups achieved higher values of maximum carrying load. Hypertension increased the dimension of the left ventricular free wall in diastole and reduced ejection and shortening fractions. The trained groups showed improvement in ejection and shortening fractions. The H group increased the proportion of extracellular matrix and reduced the proportion of cells, with the HAT group attenuating this change. Cell diameter was greater in group H, and all treatments reduced this parameter. Hypertension increased the concentration of malondialdehyde and decreased catalase activity in LV. The treatments managed to mitigate this damage. CONCLUSIONS It is concluded that the treatments managed to generate positive cardiovascular adaptations, and their combination enhanced these effects.
Collapse
Affiliation(s)
- Pilar Barbosa de Meireles
- Department of Physical Education and Nutrition, Governador Ozanam Coelho University Center, Ubá 36506-022, MG, Brazil
| | - Denise Coutinho de Miranda
- Department of Physical Education and Nutrition, Governador Ozanam Coelho University Center, Ubá 36506-022, MG, Brazil
| | - Anselmo Gomes de Moura
- Department of Physical Education and Nutrition, Governador Ozanam Coelho University Center, Ubá 36506-022, MG, Brazil
| | - Willian Cruz Ribeiro
- Department of Physical Education and Nutrition, Governador Ozanam Coelho University Center, Ubá 36506-022, MG, Brazil
| | - Ângela Quinelato Oliveira
- Department of Physical Education and Nutrition, Governador Ozanam Coelho University Center, Ubá 36506-022, MG, Brazil
| | - Luciano Bernardes Leite
- Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa 36590-000, MG, Brazil
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Pedro Forte
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- CI-ISCE, ISCE Douro, 4560-547 Penafiel, Portugal
- Research Center for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Lúcia Ribeiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Alameda Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Facultade de Ciencias, Universidad de Vigo, 32004 Ourense, Spain
| | - Samuel G Encarnação
- Department of Sports, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- CI-ISCE, ISCE Douro, 4560-547 Penafiel, Portugal
- Research Center for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | | | - Mariana Machado-Neves
- Departament of Biological Sciences, Federal University of Viçosa, Viçosa 36590-000, MG, Brazil
| | - Mariana Moura E Dias
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36590-000, MG, Brazil
| | - Iasmim Xisto Campos
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36590-000, MG, Brazil
| | | | | | - Antônio José Natali
- Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa 36590-000, MG, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education and Nutrition, Governador Ozanam Coelho University Center, Ubá 36506-022, MG, Brazil
| |
Collapse
|
2
|
de Paula VF, Tardelli LP, Amaral SL. Dexamethasone-Induced Arterial Stiffening Is Attenuated by Training due to a Better Balance Between Aortic Collagen and Elastin Levels. Cardiovasc Drugs Ther 2024; 38:693-703. [PMID: 36795192 DOI: 10.1007/s10557-023-07438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE Although the cardioprotective benefits of exercise training are well known, the effects of training on dexamethasone (DEX)-induced arterial stiffness are still unclear. This study was aimed at investigating the mechanisms induced by training to prevent DEX-induced arterial stiffness. METHODS Wistar rats were allocated into 4 groups and submitted to combined training (aerobic and resistance exercises, on alternate days, 60% of maximal capacity, for 74 d) or were kept sedentary: sedentary control rats (SC), DEX-treated sedentary rats (DS), combined training control (CT), and DEX-treated trained rats (DT). During the last 14 d, rats were treated with DEX (50 μg/kg per body weight, per day, s.c.) or saline. RESULTS DEX increased PWV (+44% vs +5% m/s, for DS vs SC, p<0.001) and increased aortic COL 3 protein level (+75%) in DS. In addition, PWV was correlated with COL3 levels (r=0.682, p<0.0001). Aortic elastin and COL1 protein levels remained unchanged. On the other hand, the trained and treated groups showed lower PWV values (-27% m/s, p<0.001) vs DS and lower values of aortic and femoral COL3 compared with DS. CONCLUSION As DEX is widely used in several situations, the clinical relevance of this study is that the maintenance of good physical capacity throughout life can be crucial to alleviate some of its side effects, such as arterial stiffness.
Collapse
Affiliation(s)
- Vinicius F de Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil
| | - Lidieli P Tardelli
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil
| | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil.
| |
Collapse
|
3
|
Krzesiak A, Enea C, Faivre JF, Bescond J, Vanderbrouck C, Cognard C, Sebille S, Bosquet L, Delpech N. Combined cardiovascular effects of ovariectomy and high-intensity interval training in female spontaneously hypertensive rats. J Appl Physiol (1985) 2024; 136:1195-1208. [PMID: 38572539 DOI: 10.1152/japplphysiol.00518.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Hypertensive postmenopausal women are more likely to develop adverse cardiac remodeling and respond less effectively to drug treatment than men. High-intensity interval exercise (HIIE) is a nonpharmacological strategy for the treatment of hypertension; however, the effectiveness in women remains uncertain. This study was designed to evaluate 1) the effects of HIIE training upon morphological and functional markers of cardiovascular health in female SHR and 2) to determine whether the hormonal shift induced by ovariectomy could influence cardiovascular responses to HIIE. Thirty-six SHR were randomly assigned to four groups: ovariectomized sedentary, ovariectomized trained, sham-operated sedentary, and sham-operated trained. The trained rats performed HIIE 5 days/wk for 8 wk. Blood pressure and echocardiographic measurements were performed before and after training in animals. Cardiac response to β-adrenergic stimulation and the expression of calcium regulatory proteins and estrogen receptors in heart samples were assessed. Endothelium-dependent vasorelaxation in response to acetylcholine was evaluated in aortic rings as well as the expression of nitric oxide synthase isoforms (eNOS and P-eNOS) by Western blotting. In both groups of trained SHR, HIIE induced eccentric cardiac remodeling with greater inotropic and chronotropic effects, as well as an increase in SERCA and β1AR expression. However, although the trained rats showed improved endothelial function and expression of eNOS and P-eNOS in the aorta, there was no demonstrated effect on blood pressure. In addition, the responses to HIIE training were not affected by ovariectomy. This work highlights the importance of assessing the cardiovascular efficacy and safety of different exercise modalities in women.NEW & NOTEWORTHY This study reports the effects of high-intensity interval exercise (HIIE) training on cardiac and endothelial function in female hypertensive rats. Despite a lack of effect on blood pressure (BP), HIIE training induces eccentric cardiac remodeling with greater functionals effects. Furthermore, training has beneficial effects on endothelial function. However, ovarian hormones do not seem to modulate cardiac and aortic adaptations to this training modality. All this underlines the need to consider training modalities on the cardiovascular system in women.
Collapse
Affiliation(s)
- Amandine Krzesiak
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Carina Enea
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | | | - Jocelyn Bescond
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | | | - Christian Cognard
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Stéphane Sebille
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Laurent Bosquet
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Nathalie Delpech
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| |
Collapse
|
4
|
Resistance training prevents dynamics and mitochondrial respiratory dysfunction in vastus lateralis muscle of ovariectomized rats. Exp Gerontol 2023; 173:112081. [PMID: 36608776 DOI: 10.1016/j.exger.2023.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
To investigate whether ovariectomy affects mitochondrial respiratory function, gene expression of the biogenesis markers and mitochondrial dynamics of the vastus lateralis muscle, female Wistar rats divided into ovariectomized (OVX) and intact (INT) groups were kept sedentary (SED) or submitted to resistance training (RT) performed for thirteen weeks on a vertical ladder in which animals climbed with a workload apparatus. RT sessions were performed with four climbs with 65, 85, 95, and 100 % of the rat's previous maximum workload. Mitochondrial Respiratory Function data were obtained by High-resolution respirometry. Gene expression of FIS1, MFN1 and PGC1-α was evaluated by real-time PCR. There was a decrease on oxidative phosphorylation capacity in OVX-SED compared to other groups. Trained groups presented increase on oxidative phosphorylation capacity when compared to sedentary groups. For respiratory control ratio (RCR), OVX-SED presented lower values when compared to INT-SED and to trained groups. Trained groups presented RCR values higher compared to INT-SED. Exercise increased the values of FIS1, MFN1 and PGC1-α expression compared to OVX-SED. Our results demonstrated that in the absence of ovarian hormones, there is a great decrease in oxidative phosphorylation and electron transfer system capacities of sedentary animals. RT was able to increase the expression of genes related to mitochondrial dynamics markers, reversing the condition determined by ovariectomy.
Collapse
|
5
|
Razan MR, Akther F, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. 17β-Estradiol Treatment Improves Acetylcholine-Induced Relaxation of Mesenteric Arteries in Ovariectomized UC Davis Type 2 Diabetes Mellitus Rats in Prediabetic State. Front Physiol 2022; 13:900813. [PMID: 35784863 PMCID: PMC9248973 DOI: 10.3389/fphys.2022.900813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
We recently reported sex differences in mesenteric arterial function of the UC Davis type-2 diabetes mellitus (UCD-T2DM) rats as early as the prediabetic state. We reported that mesenteric arteries (MA) from prediabetic male rats exhibited a greater impairment compared to that in prediabetic females. However, when females became diabetic, they exhibited a greater vascular dysfunction than males. Thus, the aim of this study was to investigate whether the female sex hormone, estrogen preserves mesenteric arterial vasorelaxation in UCD-T2DM female rats at an early prediabetic state. Age-matched female Sprague Dawley and prediabetic (PD) UCD-T2DM rats were ovariectomized (OVX) and subcutaneously implanted with either placebo or 17β-estradiol (E2, 1.5 mg) pellets for 45 days. We assessed the contribution of endothelium-derived relaxing factors (EDRF) to acetylcholine (ACh)-induced vasorelaxation, using pharmacological inhibitors. Responses to sodium nitroprusside (SNP) and phenylephrine (PE) were also measured. Additionally, metabolic parameters and expression of some targets associated with vascular and insulin signaling were determined. We demonstrated that the responses to ACh and SNP were severely impaired in the prediabetic state (PD OVX) rats, while E2 treatment restored vasorelaxation in the PD OVX + E2. Moreover, the responses to PE was significantly enhanced in MA of PD OVX groups, regardless of placebo or E2 treatment. Overall, our data suggest that 1) the impairment of ACh responses in PD OVX rats may, in part, result from the elevated contractile responses to PE, loss of contribution of endothelium-dependent hyperpolarization (EDH) to vasorelaxation, and a decreased sensitivity of MA to nitric oxide (NO), and 2) the basis for the protective effects of E2 may be partly attributed to the elevation of the NO contribution to vasorelaxation and its interaction with MA as well as potential improvement of insulin signaling. Here, we provide the first evidence of the role of E2 in protecting MA from early vascular dysfunction in prediabetic female rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Farjana Akther
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Rifat A. Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
- *Correspondence: Roshanak Rahimian,
| |
Collapse
|
6
|
Padilha CS, Cella PS, Ribeiro AS, Voltarelli FA, Testa MT, Marinello PC, Iarosz KC, Guirro PB, Deminice R. Moderate vs high-load resistance training on muscular adaptations in rats. Life Sci 2019; 238:116964. [DOI: 10.1016/j.lfs.2019.116964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/18/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|