1
|
Takenaka K, Nishioka S, Nishida Y, Kawamukai M, Matsuo Y. Tfs1, transcription elongation factor TFIIS, has an impact on chromosome segregation affected by pka1 deletion in Schizosaccharomyces pombe. Curr Genet 2023; 69:115-125. [PMID: 37052630 DOI: 10.1007/s00294-023-01268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The cAMP-dependent protein kinase (PKA) pathway in Schizosaccharomyces pombe plays an important role in microtubule organization and chromosome segregation. Typically, loss of functional Pka1 induces sensitivity to the microtubule-destabilizing drug thiabendazole (TBZ) and chromosome mis-segregation. To determine the mechanism via which Pka1 is involved in these events, we explored the relevance of transcription factors by creating a double-deletion strain of pka1 and 102 individual genes encoding transcription factors. We found that rst2∆, tfs1∆, mca1∆, and moc3∆ suppressed the TBZ-sensitive phenotype of the pka1∆ strain, among which tfs1∆ was the strongest suppressor. All single mutants (rst2∆, tfs1∆, mca1∆, and moc3∆) showed a TBZ-tolerant phenotype. Tfs1 has two transcriptional domains (TFIIS and Zn finger domains), both of which contributed to the suppression of the pka1∆-induced TBZ-sensitive phenotype. pka1∆-induced chromosome mis-segregation was rescued by tfs1∆ in the presence of TBZ. tfs1 overexpression induced the TBZ-sensitive phenotype and a high frequency of chromosome mis-segregation, suggesting that the amount of Tfs1 must be strictly controlled. However, Tfs1-expression levels did not differ between the wild-type and pka1∆ strains, and the Tfs1-GFP protein was localized to the nucleus and cytoplasm in both strains, which excludes the direct regulation of expression and localization of Tfs1 by Pka1. Growth inhibition by TBZ in pka1∆ strains was notably rescued by double deletion of rst2 and tfs1 rather than single deletion of rst2 or tfs1, indicating that Rst2 and Tfs1 contribute independently to counteract TBZ toxicity. Our findings highlight Tfs1 as a key transcription factor for proper chromosome segregation.
Collapse
Affiliation(s)
- Kouhei Takenaka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Shiho Nishioka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Yuki Nishida
- Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
- Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan.
- Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan.
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan.
| |
Collapse
|
2
|
Herman S, Lipiński P, Ogórek M, Starzyński R, Grzmil P, Bednarz A, Lenartowicz M. Molecular Regulation of Copper Homeostasis in the Male Gonad during the Process of Spermatogenesis. Int J Mol Sci 2020; 21:ijms21239053. [PMID: 33260507 PMCID: PMC7730223 DOI: 10.3390/ijms21239053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.
Collapse
Affiliation(s)
- Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
- Correspondence:
| |
Collapse
|
3
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|