1
|
Khan A, Švara A, Wang N. Comparing Apples and Oranges: Advances in Disease Resistance Breeding of Woody Perennial Fruit Crops. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:263-287. [PMID: 38768395 DOI: 10.1146/annurev-phyto-021622-120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Apple and citrus are perennial tree fruit crops that are vital for nutritional security and agricultural economy and to achieve the Sustainable Development Goals of the United Nations. Apple scab and fire blight, along with Huanglongbing, canker, and tristeza virus, stand out as their most notorious diseases and annually destabilize fruit supply. An environmentally sound approach to managing these diseases is improving tree resistance through breeding and biotechnology. Perennial fruit tree germplasm collections are distributed globally and offer untapped potential as sources of resistance. However, long juvenility, specific pollination and flowering habits, and extensive outcrossing hinder apple and citrus breeding. Advances in breeding approaches include trans- and cis-genesis, genome editing, and rapid-cycle breeding, which, in addition to conventional crossbreeding, can all facilitate accelerated integration of resistance into elite germplasm. In addition, the global pool of available sources of resistance can be characterized by the existing genetic mapping and gene expression studies for accurate discovery of associated loci, genes, and markers to efficiently include these sources in breeding efforts. We discuss and propose a multitude of approaches to overcome the challenges of breeding for resistance in woody perennials and outline a technical path to reduce the time required for the ultimate deployment of disease-resistant cultivars.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
2
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Moreau ELP, Medberry AN, Honig JA, Molnar TJ. Genetic diversity analysis of big-bracted dogwood (Cornus florida and C. kousa) cultivars, interspecific hybrids, and wild-collected accessions using RADseq. PLoS One 2024; 19:e0307326. [PMID: 39052575 PMCID: PMC11271954 DOI: 10.1371/journal.pone.0307326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Big-bracted dogwoods are popular ornamental trees known for their beautiful spring blooms with showy bracts and four-season appeal. The two most widely grown species are Cornus florida and Cornus kousa, native to Eastern North America and East Asia. Despite their horticultural prominence, there is little information available regarding genetic diversity, population structure, relatedness, and subspecies origins of dogwood cultivars. In this study, 313 cultivars, wild-collected plants, and Rutgers University breeding selections, focusing on C. florida, C. kousa, and interspecific hybrids, were genotyped using restriction-site associated DNA sequencing (RADseq) generating thousands of single nucleotide polymorphism (SNP) and insertion deletion (Indel) markers. The research results showed high genetic diversity among C. florida and C. kousa wild-collected plants and cultivars. For C. florida, pink-bracted plants formed a distinct clade from those with white-bracts with the Mexican C. florida ssp. urbiniana forming an outgroup. For C. kousa, Chinese-collected plants (ssp. chinensis) were a distinct subspecies with clear separation from Japanese and Korean accessions (ssp. kousa) and cultivars were designated as ssp. chinensis, ssp. kousa, or ssp. hybrid. Using this information, a Kompetitive allele specific PCR (KASP) assay genotyping panel was designed to determine C. kousa trees' subspecies makeup. Results revealed many cases of genetically identical cultivars being sold under different names, especially for pink-bracted cultivars of both species. Additionally, reported parent-progeny relationships were evaluated and either validated or discredited. Finally, the hybrid germplasm analysis validated pedigrees of interspecific F1 hybrids and found many of the recent Rutgers breeding selections contain small regions of pacific dogwood (C. nuttallii) DNA introgressed into C. kousa backgrounds. This diversity study elucidates origins, diversity, and relationships of a large population of big-bracted dogwoods. The results can inform plant breeders, arboreta, and the ornamental plant industry, as most modern cultivars and popular historic cultivars are represented.
Collapse
Affiliation(s)
- Erin L. P. Moreau
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Ava N. Medberry
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Josh A. Honig
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Thomas J. Molnar
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
4
|
Diouf M, Zoclanclounon YAB, Mboup PA, Diouf D, Malédon E, Rivallan R, Chair H, Dossa K. Genome-wide development of intra- and inter-specific transferable SSR markers and construction of a dynamic web resource for yam molecular breeding: Y2MD. THE PLANT GENOME 2024; 17:e20428. [PMID: 38234122 DOI: 10.1002/tpg2.20428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Microsatellite markers are widely used in population genetics and breeding. Despite the economic significance of yams in developing countries, there is a paucity of microsatellite markers, and as of now, no comprehensive microsatellite marker database exists. In this study, we conducted genome-wide microsatellite marker development across four yam species, identified cross-species transferable markers, and designed an easy-to-use web portal for the yam researchers. The screening of Dioscorea alata, Dioscorea rotundata, Dioscorea dumetorum, and Dioscorea zingiberensis genomes resulted in 318,713, 322,501, 307,040, and 253,856 microsatellites, respectively. Mono-, di-, and tri-nucleotides were the most important types of repeats in the different species, and a total of 864,128 primer pairs were designed. Furthermore, we identified 1170 cross-species transferable microsatellite markers. Among them, 17 out of 18 randomly selected were experimentally validated with good discriminatory power, regardless of the species and ploidy levels. Ultimately, we created and deployed a dynamic Yam Microsatellite Markers Database (Y2MD) available at https://y2md.ucad.sn/. Y2MD is embedded with various useful tools such as JBrowse, Blast, insilicoPCR, and SSR Finder to facilitate the exploitation of microsatellite markers in yams. This study represents the first comprehensive microsatellite marker mining across several yam species and will contribute to advancing yam genetic research and marker-assisted breeding. The released user-friendly database constitutes a valuable platform for yam researchers.
Collapse
Affiliation(s)
- Moussa Diouf
- Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | | | - Pape Adama Mboup
- Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Erick Malédon
- UMR AGAP Institut, CIRAD, Petit Bourg, France
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Ronan Rivallan
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Hâna Chair
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Komivi Dossa
- UMR AGAP Institut, CIRAD, Petit Bourg, France
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
T. V. N, S. RP, R. L. R. Population structure and genetic diversity characterization of soybean for seed longevity. PLoS One 2022; 17:e0278631. [PMID: 36472991 PMCID: PMC9725150 DOI: 10.1371/journal.pone.0278631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Seed longevity is an important trait in the context of germplasm conservation and economics of seed production. The identification of populations with high level of genetic variability for seed longevity and associated traits will become a valuable resource for superior alleles for seed longevity. In this study, Genotyping-by-sequencing (GBS)-single nucleotide polymorphism (SNP) approach, simple sequence repeats (SSR) markers and agro-morphological traits have been explored to investigate the diversity and population structure of assembled 96 genotypes. The GBS technique performed on 96 genotypes of soybean (Glycine max (L.) Merrill) resulted in 37,897 SNPs on sequences aligned to the reference genome sequence. The average genome coverage was 6.81X with a mapping rate of 99.56% covering the entire genome. Totally, 29,955 high quality SNPs were identified after stringent filtering and most of them were detected in non-coding regions. The 96 genotypes were phenotyped for eight quantitative and ten qualitative traits by growing in field by following augmented design. The STRUCTURE (Bayesian-model based algorithm), UPGMA (Un-weighed Pair Group Method with Arithmetic mean) and principal component analysis (PCA) approaches using SSR, SNP as well as quantitative and qualitative traits revealed population structure and diversity in assembled population. The Bayesian-model based STRUCTURE using SNP markers could effectively identify clusters with higher seed longevity associated with seed coat colour and size which were subsequently validated by UPGMA and PCA based on SSR and agro-morphological traits. The results of STRUCTURE, PCA and UPGMA cluster analysis showed high degree of similarity and provided complementary data that helped to identify genotypes with higher longevity. Six black colour genotypes, viz., Local black soybean, Kalitur, ACC Nos. 39, 109, 101 and 37 showed higher seed longevity during accelerated ageing. Higher coefficient of variability observed for plant height, number of pods per plant, seed yield per plant, 100 seed weight and seed longevity confirms the diversity in assembled population and its suitability for quantitative trait loci (QTL) mapping.
Collapse
Affiliation(s)
- Naflath T. V.
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
| | - Rajendra Prasad S.
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
| | - Ravikumar R. L.
- Department of Plant Biotechnology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
6
|
Genetic Diversity and Pedigree Analysis of Red Currant Germplasm. PLANTS 2022; 11:plants11131623. [PMID: 35807575 PMCID: PMC9269202 DOI: 10.3390/plants11131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
This represents the first report on the genetic diversity of red currant germplasm collections based on genotyping-by-sequencing (GBS) data. Genotypes of 75 individuals of different origin were assessed in more than 7.5K genome positions. Multidimensional scaling (MDS) analysis has been performed. There are five accessions that are significantly isolated from each other and from the rest of the analyzed cultivars. F1 offspring of R. petraeum Wulf (Rote Hollandische) and Gondouin, as well as Rote Spatlese (F2 of R. petraeum and F2 of R. multiflorum Kit.), are the most genetically isolated on the MDS plot. Ribes multiflorum is closer to the rest of cultivars than the three abovementioned accessions. Purpurnaya cultivar (F1 of Rote Spatlese) is located between Rote Hollandische and R. multiflorum. Other genotypes, mostly represented by varieties having several species in a pedigree, occupied the rest of MDS plot relatively evenly. Descendants of R. multiflorum have been placed in the left part of MDS plot, which underlines their genetic diversity from other accessions. White- and pink-fruited cultivars were clustered together, underlining genetic relatedness. Admixture analysis of GBS data reveals six clusters (K = 6). Presumably, clustering reflects relatedness to R. petraeum, R. rubrum, R. vulgare var macrocarpum, R. multiflorum, R. vulgare, and Jonker van Tets. Based on genotyping data, F1 offspring of R. warscewiczs Jancz (cultivar Viksne), R. altissimum Turcz (Cirald), and R. palczewskii (Jancz.) Pojark (Skorospelaya) have not exhibited strict separation and were placed in a pool with other varieties. This supports modern taxonomic classifications that do not consider R. altissimum and R. palczewskii as independent species.
Collapse
|
7
|
Howard NP, van de Weg E, Luby JJ. A new method to reconstruct the direction of parent-offspring duo relationships using SNP array data and its demonstration on ancient and modern cultivars in the outcrossing species malus × domestica. HORTICULTURE RESEARCH 2022; 9:uhab069. [PMID: 35043196 PMCID: PMC8881379 DOI: 10.1093/hr/uhab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Unordered parent-offspring (PO) relationships are an outstanding issue in pedigree reconstruction studies. Resolution of the order of these relationships would expand the results, conclusions, and usefulness of such studies; however, no such PO order resolution (POR) tests currently exist. This study describes two such tests, demonstrated using SNP array data in the outcrossing species apple (Malus × domestica) on a PO relationship of known order ("Keepsake" as a parent of "Honeycrisp") and two PO relationships previously ordered only via provenance information. The first test, POR-1, tests whether some of the extended haplotypes deduced from homozygous SNP calls from one individual in an unordered PO duo are composed of recombinant haplotypes from accurately phased SNP genotypes from the second individual. If so, the first individual would be the offspring of the second individual, otherwise the opposite relationship would be present. The second test, POR-2, does not require phased SNP genotypes and uses similar logic as the POR-1 test, albeit in a different approach. The POR-1 and POR-2 tests determined the correct relationship between "Keepsake" and "Honeycrisp". The POR-2 test confirmed "Reinette Franche" as a parent of "Nonpareil" and "Brabant Bellefleur" as a parent of "Court Pendu Plat". The latter finding conflicted with the recorded provenance information, demonstrating the need for these tests. The successful demonstration of these tests suggests they can add insights to future pedigree reconstruction studies, though caveats, like extreme inbreeding or selfing, would need to be considered where relevant.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky University, Oldenburg, 26129 Germany
- Department of Horticultural Science, University of Minnesota, St. Paul, 55108 United States of America
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - James J Luby
- Department of Horticultural Science, University of Minnesota, St. Paul, 55108 United States of America
| |
Collapse
|
8
|
Genetic Diversity and Population Structure Analysis of the USDA Olive Germplasm Using Genotyping-By-Sequencing (GBS). Genes (Basel) 2021; 12:genes12122007. [PMID: 34946959 PMCID: PMC8701156 DOI: 10.3390/genes12122007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Olives are one of the most important fruit and woody oil trees cultivated in many parts of the world. Olive oil is a critical component of the Mediterranean diet due to its importance in heart health. Olives are believed to have been brought to the United States from the Mediterranean countries in the 18th century. Despite the increase in demand and production areas, only a few selected olive varieties are grown in most traditional or new growing regions in the US. By understanding the genetic background, new sources of genetic diversity can be incorporated into the olive breeding programs to develop regionally adapted varieties for the US market. This study aimed to explore the genetic diversity and population structure of 90 olive accessions from the USDA repository along with six popular varieties using genotyping-by-sequencing (GBS)-generated SNP markers. After quality filtering, 54,075 SNP markers were retained for the genetic diversity analysis. The average gene diversity (GD) and polymorphic information content (PIC) values of the SNPs were 0.244 and 0.206, respectively, indicating a moderate genetic diversity for the US olive germplasm evaluated in this study. The structure analysis showed that the USDA collection was distributed across seven subpopulations; 63% of the accessions were grouped into an identifiable subpopulation. The phylogenetic and principal coordinate analysis (PCoA) showed that the subpopulations did not align with the geographical origins or climatic zones. An analysis of the molecular variance revealed that the major genetic variation sources were within populations. These findings provide critical information for future olive breeding programs to select genetically distant parents and facilitate future gene identification using genome-wide association studies (GWAS) or a marker-assisted selection (MAS) to develop varieties suited to production in the US.
Collapse
|
9
|
Martins FB, Moraes ACL, Aono AH, Ferreira RCU, Chiari L, Simeão RM, Barrios SCL, Santos MF, Jank L, do Valle CB, Vigna BBZ, de Souza AP. A Semi-Automated SNP-Based Approach for Contaminant Identification in Biparental Polyploid Populations of Tropical Forage Grasses. FRONTIERS IN PLANT SCIENCE 2021; 12:737919. [PMID: 34745171 PMCID: PMC8569613 DOI: 10.3389/fpls.2021.737919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Aline Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | | | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Liana Jank
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
10
|
Howard NP, Peace C, Silverstein KAT, Poets A, Luby JJ, Vanderzande S, Durel CE, Muranty H, Denancé C, van de Weg E. The use of shared haplotype length information for pedigree reconstruction in asexually propagated outbreeding crops, demonstrated for apple and sweet cherry. HORTICULTURE RESEARCH 2021; 8:202. [PMID: 34465774 PMCID: PMC8408172 DOI: 10.1038/s41438-021-00637-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 05/29/2023]
Abstract
Pedigree information is of fundamental importance in breeding programs and related genetics efforts. However, many individuals have unknown pedigrees. While methods to identify and confirm direct parent-offspring relationships are routine, those for other types of close relationships have yet to be effectively and widely implemented with plants, due to complications such as asexual propagation and extensive inbreeding. The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes (referred to in this study as "summed potential lengths of shared haplotypes", SPLoSH). A custom Python script, HapShared, was developed to generate SPLoSH data in apple and sweet cherry. HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops. These distributions were then used to estimate previously unknown relationships. Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data. For cherry, a full-sib relationship was deduced for 'Emperor Francis, and 'Schmidt', a half-sib relationship for 'Van' and 'Windsor', and the paternal grandparents of 'Stella' were confirmed. For apple, 29 cultivars were found to share an unknown parent, the pedigree of the unknown parent of 'Cox's Pomona' was reconstructed, and 'Fameuse' was deduced to be a likely grandparent of 'McIntosh'. Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets, integrated genetic maps, and previously identified pedigree relationships. Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky University, Oldenburg, Germany.
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA.
| | - Cameron Peace
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, WA, USA.
| | | | - Ana Poets
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - James J Luby
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA
| | - Stijn Vanderzande
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, WA, USA
| | - Charles-Eric Durel
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207, QuaSaV, Beaucouzé, France
| | - Hélène Muranty
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207, QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207, QuaSaV, Beaucouzé, France
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
12
|
Migicovsky Z, Gardner KM, Richards C, Thomas Chao C, Schwaninger HR, Fazio G, Zhong GY, Myles S. Genomic consequences of apple improvement. HORTICULTURE RESEARCH 2021; 8:9. [PMID: 33384408 PMCID: PMC7775473 DOI: 10.1038/s41438-020-00441-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
The apple (Malus domestica) is one of the world's most commercially important perennial crops and its improvement has been the focus of human effort for thousands of years. Here, we genetically characterise over 1000 apple accessions from the United States Department of Agriculture (USDA) germplasm collection using over 30,000 single-nucleotide polymorphisms (SNPs). We confirm the close genetic relationship between modern apple cultivars and their primary progenitor species, Malus sieversii from Central Asia, and find that cider apples derive more of their ancestry from the European crabapple, Malus sylvestris, than do dessert apples. We determine that most of the USDA collection is a large complex pedigree: over half of the collection is interconnected by a series of first-degree relationships. In addition, 15% of the accessions have a first-degree relationship with one of the top 8 cultivars produced in the USA. With the exception of 'Honeycrisp', the top 8 cultivars are interconnected to each other via pedigree relationships. The cultivars 'Golden Delicious' and 'Red Delicious' were found to have over 60 first-degree relatives, consistent with their repeated use by apple breeders. We detected a signature of intense selection for red skin and provide evidence that breeders also selected for increased firmness. Our results suggest that Americans are eating apples largely from a single family tree and that the apple's future improvement will benefit from increased exploitation of its tremendous natural genetic diversity.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Kyle M Gardner
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, Fredericton, NB, Canada
| | | | - C Thomas Chao
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, USA
| | | | - Gennaro Fazio
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, USA
| | - Gan-Yuan Zhong
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, USA.
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
13
|
Winfield M, Burridge A, Ordidge M, Harper H, Wilkinson P, Thorogood D, Copas L, Edwards K, Barker G. Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. PLoS One 2020; 15:e0242940. [PMID: 33253289 PMCID: PMC7703965 DOI: 10.1371/journal.pone.0242940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
Accurate identification of named accessions in germplasm collections is extremely important, especially for vegetatively propagated crops which are expensive to maintain. Thus, an inexpensive, reliable, and rapid genotyping method is essential because it avoids the need for laborious and time-consuming morphological comparisons. Single Nucleotide Polymorphism (SNP) marker panels containing large numbers of SNPs have been developed for many crop species, but such panels are much too large for basic cultivar identification. Here, we have identified a minimum set of SNP markers sufficient to distinguish apple cultivars held in the English and Welsh national collections providing a cheaper and automatable alternative to the markers currently used by the community. We show that SNP genotyping with a small set of well selected markers is equally efficient as microsatellites for the identification of apple cultivars and has the added advantage of automation and reduced cost when screening large numbers of samples.
Collapse
Affiliation(s)
- Mark Winfield
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Helen Harper
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul Wilkinson
- Department of Functional and Comparative Genomics, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danny Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Liz Copas
- Lullingstone, Fore Street, Winsham, Somerset, United Kingdom
| | - Keith Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
14
|
Stagnati L, Soffritti G, Martino M, Bortolini C, Lanubile A, Busconi M, Marocco A. Cocoa beans and liquor fingerprinting: A real case involving SSR profiling of CCN51 and “Nacional” varieties. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Soleimani B, Lehnert H, Keilwagen J, Plieske J, Ordon F, Naseri Rad S, Ganal M, Beier S, Perovic D. Comparison Between Core Set Selection Methods Using Different Illumina Marker Platforms: A Case Study of Assessment of Diversity in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1040. [PMID: 32754184 PMCID: PMC7381318 DOI: 10.3389/fpls.2020.01040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/24/2020] [Indexed: 05/16/2023]
Abstract
Collections of plant genetic resources stored in genebanks are an important source of genetic diversity for improvement in plant breeding programs and for conservation of natural variation. The establishment of reduced representative collections from a large set of genotypes is a valuable tool that provides cost-effective access to the diversity present in the whole set. Software like Core Hunter 3 is available to generate high quality core sets. In addition, general clustering approaches, e.g., k-medoids, are available to subdivide a large data set into small groups with maximum genetic diversity between groups. Illumina genotyping platforms are a very efficient tool for the assessment of genetic diversity of plant genetic resources. The accumulation of genotyping data over time using commercial genotyping platforms raises the question of how such huge amount of information can be efficiently used for creating core collections. In the present study, after developing a 15K wheat Infinium array with 12,908 SNPs and genotyping a set of 479 hexaploid winter wheat lines (Triticum aestivum), a larger data set was created by merging 411 lines previously genotyped with the 90K iSelect array. Overlaying the markers from the 15K and 90K arrays enabled the identification of a common set of 12,806 markers, suggesting that the 15K array is a valuable and cost-effective resource for plant breeding programs. Finally, we selected genetically diverse core sets out of these 890 wheat genotypes derived from five collections based on the common markers from the 15K and 90K SNP arrays. Two different approaches, k-medoids and Core Hunter 3 were compared,and k-medoids was identified as an efficient method for selecting small core sets out of a large collection of genotypes while retaining the genetic diversity of the original population.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | | | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
| | - Sara Naseri Rad
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | | | - Sebastian Beier
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
- *Correspondence: Dragan Perovic,
| |
Collapse
|
16
|
Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, Myles S, Ørgaard M, Petersen MA, Pedersen C. Genome-Wide Association Studies in Apple Reveal Loci for Aroma Volatiles, Sugar Composition, and Harvest Date. THE PLANT GENOME 2019; 12. [PMID: 31290918 DOI: 10.3835/plantgenome2018.12.0104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Understanding the genetic architecture of fruit quality traits is crucial to target breeding of apple ( L.) cultivars. We linked genotype and phenotype information by combining genotyping-by-sequencing (GBS) generated single nucleotide polymorphism (SNP) markers with fruit flavor volatile data, sugar and acid content, and historical trait data from a gene bank collection. Using gas chromatography-mass spectrometry (GC-MS) analysis of apple juice samples, we identified 49 fruit volatile organic compounds (VOCs). We found a very variable content of VOCs, especially for the esters, among 149 apple cultivars. We identified convincing associations for the acetate esters especially butyl acetate and hexyl acetate on chromosome 2 in a region of several alcohol acyl-transferases including AAT1. For sucrose content and for fructose and sucrose in percentage of total sugars, we revealed significant SNP associations. Here, we suggest a vacuolar invertase close to significant SNPs for this association as candidate gene. Harvest date was in strong SNP association with a NAC transcription factor gene and sequencing identified two haplotypes associated with harvest date. The study shows that SNP marker characterization of a gene bank collection can be successfully combined with new and historical trait data for association studies. Suggested candidate genes may contribute to an improved understanding of the genetic basis for important traits and simultaneously provide tools for targeted breeding using marker-assisted selection (MAS).
Collapse
|
17
|
Spengler RN. Origins of the Apple: The Role of Megafaunal Mutualism in the Domestication of Malus and Rosaceous Trees. FRONTIERS IN PLANT SCIENCE 2019; 10:617. [PMID: 31191563 PMCID: PMC6545323 DOI: 10.3389/fpls.2019.00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/25/2019] [Indexed: 05/05/2023]
Abstract
The apple (Malus domestica [Suckow] Borkh.) is one of the most economically and culturally significant fruits in the world today, and it is grown in all temperate zones. With over a thousand landraces recognized, the modern apple provides a unique case study for understanding plant evolution under human cultivation. Recent genomic and archaeobotanical studies have illuminated parts of the process of domestication in the Rosaceae family. Interestingly, these data seem to suggest that rosaceous arboreal crops did not follow the same pathway toward domestication as other domesticated, especially annual, plants. Unlike in cereal crops, tree domestication appears to have been rapid and driven by hybridization. Apple domestication also calls into question the concept of centers of domestication and human intentionality. Studies of arboreal domestication also illustrate the importance of fully understanding the seed dispersal processes in the wild progenitors when studying crop origins. Large fruits in Rosaceae evolved as a seed-dispersal adaptation recruiting megafaunal mammals of the late Miocene. Genetic studies illustrate that the increase in fruit size and changes in morphology during evolution in the wild resulted from hybridization events and were selected for by large seed dispersers. Humans over the past three millennia have fixed larger-fruiting hybrids through grafting and cloning. Ultimately, the process of evolution under human cultivation parallels the natural evolution of larger fruits in the clade as an adaptive strategy, which resulted in mutualism with large mammalian seed dispersers (disperser recruitment).
Collapse
Affiliation(s)
- Robert Nicholas Spengler
- Paleoethnobotany Laboratories, Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
18
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|