1
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Extracellular acidification attenuates bronchial contraction via an autocrine activation of EP 2 receptor: Its diminishment in murine experimental asthma. Respir Physiol Neurobiol 2024; 324:104251. [PMID: 38492830 DOI: 10.1016/j.resp.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.
Collapse
Affiliation(s)
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
2
|
Chiba Y, Ito M, Ando Y, Ueda C, Yamashita M, Suto W, Ishizaka S, Torizuka A, Watanabe C, Takenoya F, Hanazaki M, Sakai H. Altered renin-angiotensin system gene expression in airways of antigen-challenged mice: ACE2 downregulation and unexpected increase in angiotensin 1-7. Respir Physiol Neurobiol 2023; 316:104137. [PMID: 37595771 DOI: 10.1016/j.resp.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Evidence suggest that the renin-angiotensin system (RAS) is activated in people with asthma, although its pathophysiological role is unclear. Angiotensin-converting enzyme 2 (ACE2) is the major enzyme that converts angiotensin II to angiotensin 1-7 (Ang-1-7), and is also known as a receptor of SARS-CoV-2. The current study was conducted to identify the change in RAS-related gene expression in airways of a murine asthma model. METHODS The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. RESULTS The KEGG pathway analysis of differentially expressed genes in our published microarray data revealed a significant change in the RAS pathway in the antigen-challenged mice. Quantitative RT-PCR analyses showed significant increases in the angiotensin II-generating enzymes (Klk1, Klk1b3 and Klk1b8) and a significant decrease in Ace2. Surprisingly, ELISA analyses revealed a significant increase in Ang-1-7 levels in bronchoalveolar lavage (BAL) fluids of the antigen-challenged animals, while no significant change in angiotensin II was observed. Application of Ang-1-7 to the isolated BSMs had no effect on their isometrical tension. CONCLUSION The expression of Ace2 was downregulated in the BSMs of OA-challenged mice, while Klk1, Klk1b3 and Klk1b8 were upregulated. Despite the downregulation of ACE2, the level of its enzymatic product, Ang-1-7, was increased in the inflamed airways, suggesting the existence of an unknown ACE2-independent pathway for Ang-1-7 production. The functional role of Ang-1-7 in the airways remains unclear.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Mana Ito
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Chihiro Ueda
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Michio Yamashita
- Laboratory of Sports Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Shota Ishizaka
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Ai Torizuka
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Chie Watanabe
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Fumiko Takenoya
- Laboratory of Sports Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Motohiko Hanazaki
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan; Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
3
|
Ren M, Li L, Jia J, Wei B. Association between PLA2G4A and P2RX7 genes and eosinophilic phenotype and environment with pediatric asthma. Gene X 2023; 857:147182. [PMID: 36623677 DOI: 10.1016/j.gene.2023.147182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mengyang Ren
- Jinzhou Medical University, Jinzhou, Liaoning 110016, PR China; General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China
| | - Lingxue Li
- General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China
| | - Jingjing Jia
- Jinzhou Medical University, Jinzhou, Liaoning 110016, PR China; General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China
| | - Bing Wei
- General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
4
|
Chiba Y, Adachi Y, Ando Y, Fujii S, Suto W, Sakai H. A lncRNA MALAT1 is a positive regulator of RhoA protein expression in bronchial smooth muscle cells. Life Sci 2023; 313:121289. [PMID: 36529281 DOI: 10.1016/j.lfs.2022.121289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS Augmented smooth muscle contractility of the airways associated with an increased expression of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of contraction, is one of the causes of airway hyperresponsiveness. However, the mechanism of the altered properties of airway smooth muscle cells, including the RhoA upregulation, is not fully understood. This study aims to define functional role of a long non-coding RNA MALAT1 in the RhoA expression and development of bronchial smooth muscle (BSM) hyper-contractility. MAIN METHODS Cultured human BSM cells were transfected with MALAT1 antisense oligonucleotide (AS), miR-133a-3p mimic, and/or inhibitor, and then stimulated with interleukin-13 (IL-13). In animal experiments, the ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. KEY FINDINGS Treatment of the cells with IL-13 induced an increase in RhoA protein. Either MALAT1 AS or miR-133a-3p mimic transfection inhibited the IL-13-induced upregulation of RhoA. The inhibitory effect of MALAT1 AS was abolished by co-transfection with miR-133a-3p inhibitor. In BSMs of the murine asthma model, upregulations of Malat1 and RhoA protein were observed concomitantly with downregulation of miR-133a-3p. SIGNIFICANCE These findings suggest that MALAT1 positively regulates RhoA protein expression by inhibiting miR-133a-3p in BSM cells, and that its upregulation causes the RhoA upregulation, resulting in an augmented BSM contractility.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Yukika Adachi
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Shigeki Fujii
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
5
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Hyperresponsiveness to Extracellular Acidification-Mediated Contraction in Isolated Bronchial Smooth Muscles of Murine Experimental Asthma. Lung 2022; 200:591-599. [PMID: 35930050 DOI: 10.1007/s00408-022-00558-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation. The extracellular proton-sensing mechanisms are inherent in various cells including airway structural cells, although their physiological and pathophysiological roles in bronchial smooth muscles (BSMs) are not fully understood. In the present study, to explore the functional role of extracellular acidification on the BSM contraction, the isolated mouse BSMs were exposed to acidic pH under contractile stimulation. METHODS AND RESULTS The RT-PCR analyses revealed that the proton-sensing G protein-coupled receptors were expressed both in mouse BSMs and cultured human BSM cells. In the mouse BSMs, change in the extracellular pH from 8.0 to 6.8 caused an augmentation of contraction induced by acetylcholine. Interestingly, the acidic pH-induced BSM hyper-contraction was further augmented in the mice that were sensitized and repeatedly challenged with ovalbumin antigen. In this animal model of asthma, upregulations of G protein-coupled receptor 68 (GPR68) and GPR65, that were believed to be coupled with Gq and Gs proteins respectively, were observed, indicating that the acidic pH could cause hyper-contraction probably via an activation of GPR68. However, psychosine, a putative antagonist for GPR68, failed to block the acidic pH-induced responses. CONCLUSION These findings suggest that extracellular acidification contributes to the airway hyperresponsiveness, a characteristic feature of bronchial asthma. Further studies are required to identify the receptor(s) responsible for sensing extracellular protons in BSM cells.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
6
|
Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2021; 85:100990. [PMID: 34281719 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Allergic asthma reflects the interplay between inflammatory mediators and immune, airway epithelial, and other cells. This review summarizes key insights in these areas over the past year. RECENT FINDINGS Key findings over the past year demonstrate that epithelial cells mediate tight junction breakdown to facilitate the development of asthma-like disease in mice. Innate lymph lymphoid cells (ILC), while previously shown to promote allergic airway disease, have now been shown to inhibit the development of severe allergic disease in mice. Fibrinogen cleavage products (previously shown to mediate allergic airway disease and macrophage fungistatic immunity by signaling through Toll-like receptor 4) have now been shown to first bind to the integrin Mac-1 (CD11c/CD18). Therapeutically, recent discoveries include the development of the antiasthma drug PM-43I that inhibits the allergy-related transcription factors STAT5 and STAT6 in mice, and confirmatory evidence of the efficacy of the antifungal agent voriconazole in human asthma. SUMMARY Studies over the past year provide critical new insight into the mechanisms by which epithelial cells, ILC, and coagulation factors contribute to the expression of asthma-like disease and further support the development antiasthma drugs that block STAT factors and inhibit fungal growth in the airways.
Collapse
|
8
|
Chiba Y, Okumura K, Tamaki S, Yasuhara Y, Suto W, Hanazaki M, Sakai H. Increased Gene expression of CCL2/CCR2 axis in bronchial smooth muscles of allergen-challenged mice. Respir Physiol Neurobiol 2021; 289:103669. [PMID: 33813049 DOI: 10.1016/j.resp.2021.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Augmented bronchial smooth muscle (BSM) contraction is a cause of airway hyperresponsiveness (AHR) in asthma. Increasing evidence suggest that C-C motif chemokine 2 (CCL2) modulates smooth muscle contractility by activating its binding partner C-C chemokine receptor type 2 (CCR2). In the present study, changes in the gene expression of CCL2/CCR2 axis were determined in the BSMs of a murine model of allergic asthma. MATERIALS AND METHODS The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, total RNAs of the main BSM tissues and bronchoalveolar lavage fluids (BALFs) were obtained. RESULTS Our published microarray data (GEO accession No. GSE116504) detected changes in gene expression associated with the chemokine signaling pathway (KEGG Map ID: 04062) in BSMs of mice with AHR induced by antigen exposure. Among them, quantitative RT-PCR analyses showed significant increase in mRNA expression of Ccl2 and Ccr2. Analysis of BALFs also revealed a significant increase in Ccl2 protein in the airways of the diseased animals. CONCLUSION It is thus possible that, in association with the AHR, the CCL2/CCR2 axis is enhanced in the airways of allergic bronchial asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan.
| | - Kaori Okumura
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Sayuri Tamaki
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Yurika Yasuhara
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Japan
| |
Collapse
|
9
|
Chiba Y. [Non-coding RNAs and bronchial smooth muscle hyperresponsiveness in allergic bronchial asthma]. Nihon Yakurigaku Zasshi 2020; 155:364-368. [PMID: 33132251 DOI: 10.1254/fpj.20053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in normal and diseased cell functions. A small GTPase RhoA is a key protein of bronchial smooth muscle (BSM) contraction, and an up-regulation of RhoA has been demonstrated in BSMs of experimental asthma. Our previous study also demonstrated that RhoA translation was controlled by a miRNA, miR-133a, in BSMs. In human BSM cells (hBSMCs), an up-regulation of RhoA was observed when the function of endogenous miR-133a was inhibited by its antagomir. Treatment of hBSMCs with interleukin-13 (IL-13) caused an up-regulation of RhoA and a down-regulation of miR-133a. In a murine experimental asthma, increased expression of IL-13 and RhoA and the BSM hyperresponsiveness were observed. Interestingly, the level of miR-133a was significantly decreased in BSMs of the diseased animals. These findings suggest that RhoA expression is negatively regulated by miR-133a in BSMs, and that the miR-133a down-regulation causes an up-regulation of RhoA, resulting in an augmentation of the contraction. Recent studies also revealed an inhibitory effect of lncRNA Malat1 on the miR-133a function. Thus, lncRNAs/miRNAs might be key regulators of BSM hyperresponsiveness, and provide us a new insight into the treatment of airway hyperresponsiveness in asthmatics.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
10
|
Chiba Y, Matsumoto M, Hanazaki M, Sakai H. Downregulation of miR-140-3p Contributes to Upregulation of CD38 Protein in Bronchial Smooth Muscle Cells. Int J Mol Sci 2020; 21:E7982. [PMID: 33121100 PMCID: PMC7663226 DOI: 10.3390/ijms21217982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
In allergic bronchial asthma, an increased smooth muscle contractility of the airways is one of the causes of the airway hyperresponsiveness (AHR). Increasing evidence also suggests a possible involvement of microRNAs (miRNAs) in airway diseases, including asthma, although their roles in function and pathology largely unknown. The current study aimed to determine the role of a miRNA, miR-140-3p, in the control of protein expression of CD38, which is believed to regulate the contraction of smooth muscles, including the airways. In bronchial smooth muscles (BSMs) of the mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an upregulation of CD38 protein concurrently with a significant reduction of miR-140-3p was observed. In cultured human BSM cells (hBSMCs), transfection with a synthetic miR-140-3p inhibitor caused an increase in CD38 protein, indicating that its basal protein expression is regulated by endogenous miR-140-3p. Treatment of the hBSMCs with interleukin-13 (IL-13), an asthma-related cytokine, caused both an upregulation of CD38 protein and a downregulation of miR-140-3p. Transfection of the hBSMCs with miR-140-3p mimic inhibited the CD38 protein upregulation induced by IL-13. On the other hand, neither a CD38 product cyclic ADP-ribose (cADPR) nor its antagonist 8-bromo-cADPR had an effect on the BSM contraction even in the antigen-challenged mice. Taken together, the current findings suggest that the downregulation of miR-140-3p induced by IL-13 might cause an upregulation of CD38 protein in BSM cells of the disease, although functional and pathological roles of the upregulated CD38 are still unclear.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan; (M.M.); (M.H.)
| | - Mayumi Matsumoto
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan; (M.M.); (M.H.)
| | - Motohiko Hanazaki
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan; (M.M.); (M.H.)
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo 142-8501, Japan;
| |
Collapse
|
11
|
Chiba Y, Ueda C, Kohno N, Yamashita M, Miyakawa Y, Ando Y, Suto W, Hirabayashi T, Takenoya F, Takasaki I, Kamei J, Sakai H, Shioda S. Attenuation of relaxing response induced by pituitary adenylate cyclase-activating polypeptide in bronchial smooth muscle of experimental asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L786-L793. [PMID: 32877227 DOI: 10.1152/ajplung.00315.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Chihiro Ueda
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Naoko Kohno
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Michio Yamashita
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yui Miyakawa
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Takahiro Hirabayashi
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Seiji Shioda
- Peptide Drug Innovation Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
12
|
Suto W, Sakai H, Chiba Y. Sustained exposure to prostaglandin D 2 augments the contraction induced by acetylcholine via a DP 1 receptor-mediated activation of p38 in bronchial smooth muscle of naive mice. J Smooth Muscle Res 2020; 55:1-13. [PMID: 30918168 PMCID: PMC6433600 DOI: 10.1540/jsmr.55.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostaglandin D2 (PGD2), one of the key lipid mediators of
allergic airway inflammation, is increased in the airways of asthmatics.
However, the role of PGD2 in the pathogenesis of asthma is not fully
understood. In the present study, effects of PGD2 on smooth muscle
contractility of the airways were determined to elucidate its role in the
development of airway hyperresponsiveness (AHR). In a murine model of allergic
asthma, antigen challenge to the sensitized animals caused a sustained increase
in PGD2 levels in bronchoalveolar lavage (BAL) fluids, indicating
that smooth muscle cells of the airways are continually exposed to
PGD2 after the antigen exposure. In bronchial smooth muscles
(BSMs) isolated from naive mice, a prolonged incubation with PGD2
(10−5 M, for 24 h) induced an augmentation of contraction induced
by acetylcholine (ACh): the ACh concentration-response curve was significantly
shifted upward by the 24-h incubation with PGD2. Application of
PGD2 caused phosphorylation of ERK1/2 and p38 in cultured BSM
cells: both of the PGD2-induced events were abolished by laropiprant
(a DP1 receptor antagonist) but not by fevipiprant (a DP2
receptor antagonist). In addition, the BSM hyperresponsiveness to ACh induced by
the 24-h incubation with PGD2 was significantly inhibited by
co-incubation with SB203580 (a p38 inhibitor), whereas U0126 (a ERK1/2
inhibitor) had no effect on it. These findings suggest that prolonged exposure
to PGD2 causes the BSM hyperresponsiveness via the DP1
receptor-mediated activation of p38. A sustained increase in PGD2 in
the airways might be a cause of the AHR in allergic asthmatics.
Collapse
Affiliation(s)
- Wataru Suto
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
13
|
Szymczak-Pajor I, Kleniewska P, Wieczfinska J, Pawliczak R. Wide-Range Effects of 1,25(OH)2D3 on Group 4A Phospholipases Is Related to Nuclear Factor κ-B and Phospholipase-A2 Activating Protein Activity in Mast Cells. Int Arch Allergy Immunol 2019; 181:56-70. [PMID: 31707382 DOI: 10.1159/000503628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Phospholipases are enzymes that occur in many types of human cells, including mast cells, and play an important role in the molecular background of asthma pathogenesis, and the development of inflammation NF-κB activities that affect numerous biological processes has been reported in many inflammatory diseases including asthma. Vitamin D is a widely studied factor that affects many diseases, including asthma. The aim of this study is to assess the influence of 1,25-(OH)2D3 on regulation of chosen phospholipase-A2 (PLA2) expression-selected inflammation mediators. METHODS LUVA mast cells were stimulated with 1,25(OH)2D3, and inhibitors of NF-κB p65 and ubiquitination. Expression analysis of phospholipases (PLA2G5, PLA2G10, PLA2G12, PLA2G15, PLA2G4A, PLA2G4B, PLA2G4C, PLAA, NF-κB p65, and UBC) was done utilizing real-time PCR and Western blot. Eicosanoid (LTC4, LXA4, 15[S]-HETE, and PGE2) levels and sPLA2 were also measured. RESULTS We found that 1,25(OH)2D3 decreased the expression of PLA2G5, PLA2G15, PLA2G5,UBC, and NF-κB p65 but increased expression of PLAA and PLA2G4C (p < 0.05). Moreover, the expression of PLA2G5 and PLA2G15 decreased after inhibition of NF-κB p65 and UBC. Increased levels of released LXA4 and 15(S)-HETE, decreased levels of LTC4, and sPLA2s enzymatic activity in response to 1,25(OH)2D3 were also observed. Additionally, NF-κB p65 inhibition led to an increase in the LXA4 concentration. CONCLUSION Future investigations will be needed to further clarify the role of 1,25(OH)2D3 in the context of asthma and the inflammatory process; however, these results confirm a variety of effects which can be caused by this vitamin. 1,25(OH)2D3-mediated action may result in the development of new therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
14
|
Kai Y, Kon R, Ikarashi N, Chiba Y, Kamei J, Sakai H. Role of Rac1 in augmented endothelin-1-induced bronchial contraction in airway hyperresponsive mice. J Pharmacol Sci 2019; 141:106-110. [PMID: 31679962 DOI: 10.1016/j.jphs.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/31/2023] Open
Abstract
It has recently been exhibited that Rac1 expression is increased in the bronchial tissue of a murine model with repeated antigen-challenged airway hyperresponsiveness (AHR). In the present study, the role of Rac1 in endothelin-1 (ET-1)-induced bronchial contraction and myosin light chain (MLC) phosphorylation was examined in AHR mice. Enhanced reactions in AHR mice were prevented by the Rac1 inhibitor NSC23766. These findings suggest that increased activation of Rac1 might be responsible for the enhancement of the bronchial contraction induced by ET-1 in AHR.
Collapse
Affiliation(s)
- Yuki Kai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan.
| |
Collapse
|
15
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|