1
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
2
|
Gonçalves-Santos E, Caldas IS, Fernandes VÂ, Franco LL, Pelozo MF, Feltrim F, Maciel JS, Machado JVC, Gonçalves RV, Novaes RD. Pharmacological potential of new metronidazole/eugenol/dihydroeugenol hybrids against Trypanosoma cruzi in vitro and in vivo. Int Immunopharmacol 2023; 121:110416. [PMID: 37295025 DOI: 10.1016/j.intimp.2023.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
AIMS From well-delimited immunomodulatory, redox and antimicrobial properties; metronidazole and eugenol were used as structural platforms to assembly two new molecular hybrids (AD06 and AD07), whose therapeutic relevance was analyzed on T. cruzi infection in vitro and in vivo. METHODS Non-infected, T. cruzi-infected H9c2 cardiomyocytes, and mice non-treated and treated with vehicle, benznidazole (Bz - reference drug), AD06 and AD07 were investigated. Parasitological, prooxidant, antioxidant, microstructural, immunological, and hepatic function markers were analyzed. RESULTS Our findings indicated that in addition to having a direct antiparasitic effect on T. cruzi, metronidazole/eugenol hybrids (especially AD07) attenuated cellular parasitism, reactive species biosynthesis and oxidative stress in infected cardiomyocytes in vitro. Although AD06 and AD07 exerted no relevant impact on antioxidant enzymes activity (CAT, SOD, GR and GPx) in host cells, these drugs (especially AD07) attenuated trypanothione reductase activity in T. cruzi, which increased parasite's susceptibility to in vitro pro-oxidant challenge. AD06 and AD07 were well tolerated and do not determine humoral response suppression, mortality (100 % survival) or hepatotoxicity in mice, as indicated by transaminases plasma levels. AD07 also induced relevant in vivo antiparasitic and cardioprotective effects, attenuating parasitemia, cardiac parasite load and myocarditis in T. cruzi-infected mice. Although this cardioprotective response is potentially related to AD07 antiparasitic effect, a direct anti-inflammatory potential of this molecular hybrid cannot be ruled out. CONCLUSION Taken together, our findings indicated that the new molecular hybrid AD07 stood out as a potentially relevant candidate for the development of new, safe and more effective drug regimens for T. cruzi infection treatment.
Collapse
Affiliation(s)
- Elda Gonçalves-Santos
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Valquiria  Fernandes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Lucas L Franco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Mônica F Pelozo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Fernando Feltrim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Juliana S Maciel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Jose Vaz C Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Annang FB, Pérez-Moreno G, Bosch-Navarrete C, González-Menéndez V, Martín J, Mackenzie TA, Ramos MC, Ruiz-Pérez LM, Genilloud O, González-Pacanowska D, Vicente F, Reyes F. Antiparasitic Meroterpenoids Isolated from Memnoniella dichroa CF-080171. Pharmaceutics 2023; 15:492. [PMID: 36839814 PMCID: PMC9962372 DOI: 10.3390/pharmaceutics15020492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Memnoniella is a fungal genus from which a wide range of diverse biologically active compounds have been isolated. A Memnoniella dichroa CF-080171 extract was identified to exhibit potent activity against Plasmodium falciparum 3D7 and Trypanosoma cruzi Tulahuen whole parasites in a high-throughput screening (HTS) campaign of microbial extracts from the Fundación MEDINA's collection. Bioassay-guided isolation of the active metabolites from this extract afforded eight new meroterpenoids of varying potencies, namely, memnobotrins C-E (1-3), a glycosylated isobenzofuranone (4), a tricyclic isobenzofuranone (5), a tetracyclic benzopyrane (6), a tetracyclic isobenzofuranone (7), and a pentacyclic isobenzofuranone (8). The structures of the isolated compounds were established by (+)-ESI-TOF high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Compounds 1, 2, and 4 exhibited potent antiparasitic activity against P. falciparum 3D7 (EC50 0.04-0.243 μM) and T. cruzi Tulahuen (EC50 0.266-1.37 μM) parasites, as well as cytotoxic activity against HepG2 tumoral liver cells (EC50 1.20-4.84 μM). The remaining compounds (3, 5-8) showed moderate or no activity against the above-mentioned parasites and cells.
Collapse
Affiliation(s)
- Frederick Boye Annang
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC) Avda. del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC) Avda. del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Victor González-Menéndez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Maria C. Ramos
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC) Avda. del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC) Avda. del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| |
Collapse
|
4
|
Jaime LD, Aracely LM, Paulina OM, Dumonteil E, Barnabé C, Waleckx E, Hernández-Giles RG, Ramos-Ligonio A. Molecular Characterization of Four Mexican Isolates of Trypanosoma cruzi and Their Profile Susceptibility to Nifurtimox. Acta Parasitol 2022; 67:1584-1593. [PMID: 36029434 DOI: 10.1007/s11686-022-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The objective of this study was to molecularly characterize Mexican isolates of T. cruzi obtained from infected triatomine bugs (the vectors of T. cruzi) and to evaluate their susceptibility to Nifurtimox (NFX). METHODS Three isolates obtained from Triatoma dimidiata (collected in the State of Veracruz) and one isolate obtained from Triatoma bassolsae (collected in the State of Puebla) were molecularly characterized and the expression of genes associated with natural resistance to NFX was analyzed by qPCR. RESULTS Molecular characterization by PCR showed that isolates Zn3, Zn5, and SRB1 belong to the DTU TcI, while isolate Sum3 belongs to TcIV. The latter was also confirmed by sequencing of mitochondrial genes. Isolate Zn5 was the most sensitive to treatment with NFX (IC50, 6.8 μM), isolates SRB1 and Zn3 were partially resistant (IC50, 12.8 μM and 12.7 μM) and isolate Sum3 showed a high degree of resistance to NFX (IC50, 21.4 µM). We also found an association between decreased NTR1 or OYE gene expression with NFX resistance. CONCLUSION Our results also evidenced a high variability in the susceptibility to NFX of these T. cruzi isolates Central and Southeastern Mexico, suggesting the presence of naturally resistant isolates circulating in the country. These results have important implications for defining treatment policies for patients with Chagas disease.
Collapse
Affiliation(s)
- López-Domínguez Jaime
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - López-Monteon Aracely
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Asociacion Chagas con Ciencia y Conocimiento A.C., Orizaba, Veracruz, Mexico
| | - Ochoa-Martínez Paulina
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Eric Dumonteil
- Department of Tropical Medicine, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Christian Barnabé
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Etienne Waleckx
- Asociacion Chagas con Ciencia y Conocimiento A.C., Orizaba, Veracruz, Mexico.,Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France.,Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Rubén Gustavo Hernández-Giles
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico.,Maestría en Ciencias en Procesos Biológicos, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | - Angel Ramos-Ligonio
- LADISER de Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Edificio D, Prolongación de Oriente 6 #1009, Colonia Rafael Alvarado, C.P. 94340, 86039, Orizaba, Veracruz, Mexico. .,Asociacion Chagas con Ciencia y Conocimiento A.C., Orizaba, Veracruz, Mexico.
| |
Collapse
|
5
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
6
|
Martinez SJ, Nardella GN, Rodríguez ME, Rivero CV, Agüero F, Romano PS. Biological features of TcM: A new Trypanosoma cruzi isolate from Argentina classified into TcV lineage. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100152. [PMID: 35909611 PMCID: PMC9325899 DOI: 10.1016/j.crmicr.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TcM is a new T. cruzi isolate that belongs to DTU TcV. TcV is a T. cruzi linage prevalent in human infections of Argentina. TcM is less virulent that TcY strain. TcM displays slow-growing rate and muscle tissue tropism. TcM is more susceptible to benznidazole than TcY.
Trypanosoma cruzi, the etiologic agent of Chagas disease (CD) presents a wide genetic and phenotypic diversity that is classified into seven lineages or discrete typing units (DTU: TcI to TcVI and Tcbat). Although isolates and strains that belong to a particular group can share some attributes, such as geographic distribution, others like growth rate, cell tropism, and response to treatment can be highly variable. In addition, studies that test new trypanocidal drugs are frequently conducted on T. cruzi strains maintained for a long time in axenic culture, resulting in changes in parasite virulence and other important features. This work aimed to isolate and characterize a new T. cruzi strain from a chronic Chagas disease patient. The behavior of this isolate was studied by using standard in vitro assays and in vivo mice infection tests and compared with the T. cruzi Y strain (TcY), broadly used in research laboratories worldwide. Data showed that TcM behaves as a slow-growing strain in vitro that develops chronic infections in mice and displays high tropism to muscular tissues, in accordance with its clinical performance. In contrast, the Y strain behaved as an acute strain that can infect different types of cells and tissues. Interestingly, TcM, which belongs to DTU TcV, is more susceptible to benznidazole than TcY, a TcII strain considered moderately resistant to this drug. These differential properties contribute to the characterization of a TcV strain, one of the main lineages in the southern countries of South America, and open the possibility to introduce changes that improve the management of Chagas patients in the future
Collapse
Affiliation(s)
- Santiago José Martinez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | | | - Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
- Facultad de Ciencias Médicas. Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
- Corresponding author at: Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| |
Collapse
|
7
|
Coutinho JVP, Rosa-Fernandes L, Mule SN, de Oliveira GS, Manchola NC, Santiago VF, Colli W, Wrenger C, Alves MJM, Palmisano G. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages. J Proteomics 2021; 248:104339. [PMID: 34352427 DOI: 10.1016/j.jprot.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a flagellate protozoa being the etiological agent of Chagas disease, a neglected tropical disease, which still poses a public health problem worldwide. The intricate molecular changes during T. cruzi-host interaction have been explored using different largescale omics techniques. However, protein stability is largely unknown. Thermal proteome profiling (TPP) methodology has the potential to characterize proteome-wide stability highlighting key proteins during T. cruzi infection and life stage transition from the invertebrate to the mammalian host. In the present work, T. cruzi epimastigotes and trypomastigotes cell lysates were subjected to TPP workflow and analyzed by quantitative large-scale mass spectrometry-based proteomics to fit a melting profile for each protein. A total of 2884 proteins were identified and associated to 1741 melting curves being 1370 in trypomastigotes (TmAVG 53.53 °C) and 1279 in epimastigotes (TmAVG 50.89 °C). A total of 453 proteins were identified with statistically different melting profiles between the two life stages. Proteins associated to pathogenesis and intracellular transport had regulated melting temperatures. Membrane and glycosylated proteins had a higher average Tm in trypomastigotes compared to epimastigotes. This study represents the first large-scale comparison of parasite protein stability between life stages. SIGNIFICANCE: Trypanosoma cruzi, a unicellular flagellate parasite, is the etiological agent of Chagas disease, endemic in South America and affecting more that 7 million people worldwide. There is an intense research to identify novel chemotherapeutic and diagnostic targets of Chagas disease. Proteomic approaches have helped in elucidating the quantitative proteome and PTMs changes of T. cruzi during life cycle transition and upon different biotic and abiotic stimuli. However, a comprehensive knowledge of the protein-protein interaction and protein conformation is still missing. In order to fill this gap, this manuscript elucidates the T. cruzi Y strain proteome-wide thermal stability map in the epimastigote and trypomastigote life stages. Comparison between life stages showed a higher average melting temperature stability for trypomastigotes than epimastigotes indicating a host temperature adaptation. Both presented a selective thermal stability shift for cellular compartments, molecular functions and biological processes based on the T. cruzi life stage. Membrane and glycosylated proteins presented a higher thermal stability in trypomastigotes when compared to the epimastigotes.
Collapse
Affiliation(s)
- Joao V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
8
|
Chowdhury IH, Lokugamage N, Garg NJ. Experimental Nanovaccine Offers Protection Against Repeat Exposures to Trypanosoma cruzi Through Activation of Polyfunctional T Cell Response. Front Immunol 2020; 11:595039. [PMID: 33414785 PMCID: PMC7783422 DOI: 10.3389/fimmu.2020.595039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 10/26/2022] Open
Abstract
A parasitic protozoan Trypanosoma cruzi (T. cruzi) is the etiologic agent of Chagas disease. Previously, we have identified T. cruzi antigens TcG2 and TcG4 as potential vaccine candidates, cloned in eukaryotic expression vector pCDNA3.1 (referred as p2/4) and tested their ability to elicit protection from T. cruzi infection. In the present study, we subcloned the two antigens in a nanoplasmid that is optimized for delivery, antigen expression, and regulatory compliance standards, and evaluated the nanovaccine (referred as nano2/4) for prophylactic protection against repeat T. cruzi infections. For this, C57BL/6 mice were immunized with two doses of p2/4 or nano2/4 at 21 days interval, challenged with T. cruzi 21 days after 2nd immunization, and euthanized at 10- and 21-days post-infection (pi) corresponding to parasite dissemination and replication phase, respectively. Some mice were re-challenged 21 days pi and monitored at 7 days after re-infection. Without the help of a vaccine, T. cruzi elicited delayed and sub-par T cell activation and low levels of effector molecules that failed to control tissue dissemination and replication of the parasite and provided no protection against repeat challenge infection. The nano2/4 was most effective in eliciting an early activation and production of IFN-γ by CD4+T effector/effector memory (TEM) cells and cytolytic perforin (PFN) and granzyme B (GZB) molecules by CD4+ and CD8+ TEM subsets at 10 days pi that was followed by robust expansion of CD4+ and CD8+ TEM and TCM cells with further increase in IFN-γ production at 21 days pi. Consequently, nano2/4-immunized mice exhibited potent control of parasite dissemination at 10 days pi, and tissue parasite burden and tissue inflammatory infiltrate and necrosis were barely detectable at 21 days pi. Furthermore, nano2/4-immunized mice responded to re-challenge infection with high levels of effector molecules production by CD4+ and CD8+ TEM subpopulations that offered even better control of tissue parasite burden than was observed after 1st infection. In comparison, non-vaccinated/infected mice exhibited clinical features of sickness and 59% mortality within 7 days after re-infection. In conclusion, we show that delivery of TcG2 and TcG4 in nanoplasmid offers excellent, protective T cell immunity against repeat T. cruzi infections.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX, United States.,Institute for Human Infections and Immunity, UTMB, Galveston, TX, United States
| |
Collapse
|
9
|
Sensibilidad in vitro a benznidazol, nifurtimox y posaconazol de cepas de Trypanosoma cruzi de Paraguay. BIOMÉDICA 2020; 40:749-763. [PMID: 33275352 PMCID: PMC7808768 DOI: 10.7705/biomedica.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.
Collapse
|
10
|
Martinez SJ, Romano PS, Engman DM. Precision Health for Chagas Disease: Integrating Parasite and Host Factors to Predict Outcome of Infection and Response to Therapy. Front Cell Infect Microbiol 2020; 10:210. [PMID: 32457849 PMCID: PMC7225773 DOI: 10.3389/fcimb.2020.00210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Chagas disease, caused by the infection with the protozoan parasite Trypanosoma cruzi, is clinically manifested in approximately one-third of infected people by inflammatory heart disease (cardiomyopathy) and, to a minor degree, gastrointestinal tract disorders (megaesophagus or megacolon). Chagas disease is a zoonosis transmitted among animals and people through the contact with triatomine bugs, which are found in much of the western hemisphere, including most countries of North, Central and South America, between parallels 45° north (Minneapolis, USA) and south (Chubut Province, Argentina). Despite much research on drug discovery for T. cruzi, there remain only two related agents in widespread use. Likewise, treatment is not always indicated due to the serious side effects of these drugs. On the other hand, the epidemiology and pathogenesis of Chagas disease are both highly complex, and much is known about both. However, it is still impossible to predict what will happen in an individual person infected with T. cruzi, because of the highly variability of parasite virulence and human susceptibility to infection, with no definitive molecular predictors of outcome from either side of the host-parasite equation. In this Minireview we briefly discuss the current state of T. cruzi infection and prognosis and look forward to the day when it will be possible to employ precision health to predict disease outcome and determine whether and when treatment of infection may be necessary.
Collapse
Affiliation(s)
- Santiago J Martinez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos," (IHEM-CONICET- Universidad Nacional de Cuyo), Mendoza, Argentina.,Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos," (IHEM-CONICET- Universidad Nacional de Cuyo), Mendoza, Argentina
| | - David M Engman
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Quebrada Palacio LP, Fernández ER, Hernández-Vásquez Y, Petray PB, Postan M. Circulating T Follicular Helper Cell Abnormalities Associated to Different Clinical Forms of Chronic Chagas Disease. Front Cell Infect Microbiol 2020; 10:126. [PMID: 32296649 PMCID: PMC7136390 DOI: 10.3389/fcimb.2020.00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Multiple perturbations of the immune response affecting a range of cells have been reported in Trypanosoma cruzi-infected individuals and associated to clinical manifestations of chronic Chagas disease. There is a paucity of knowledge about the role of T follicular helper (Tfh) cells in this infection. Here, we sought to characterize circulating Tfh (cTfh) cells in chronic Chagas disease patients and to identify potential associations with disease severity in humans. cTfh cells were characterized by flow cytometry in freshly isolated PBMCs from 7 T. cruzi-infected asymptomatic patients (ASYMP), 5 patients with chronic chagasic dilated cardiomyopathy (CCC) and 8 healthy controls, using antibodies against chemokine receptors CXCR5, CXCR3, CCR6, and CCR7. Our results showed significant expansion of CD4+CD45RO+CXCR5+CCR6+ cells in ASYMP and CCC patients, along with a contraction of CD4+CD45RO+CXCR5+CXCR3-CCR6- (cTfh2) cells. ASYMP patients further exhibited decreased CD4+CD45RO+CXCR5+CXCR3+CCR6- (cTfh1) cells and expanded CD4+CD45RO+CXCR5+CXCR3-CCR6+ (cTfh17) cells while CCC patients exhibited significantly increased frequencies of CD4+CD45RO+CXCR5+CCR7+ cells. Linear regression analysis revealed a positive trend of CD4+CD45RO+CXCR5+CXCR3+CCR6+ (cTfh1/17) cells and negative trends of cTfh1 and cTfh2 cells as disease was more severe. There was no correlation between the frequencies of cTfh cells and circulating CD19+IgD-IgG+ cells or serum levels of T. cruzi-specific IgG. These results demonstrate that the cTfh compartment of humans chronically infected with T. cruzi comprises expanded CCR6-expressing cells and reduced cTfh2 cells. The association of discrete phenotypic changes in cTfh subsets with different clinical forms suggests the potential contribution of T follicular helper cells to Chagas heart disease progression.
Collapse
Affiliation(s)
- Luz P Quebrada Palacio
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS/Malbran, Buenos Aires, Argentina
| | - Esteban R Fernández
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS/Malbran, Buenos Aires, Argentina
| | - Yolanda Hernández-Vásquez
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS/Malbran, Buenos Aires, Argentina
| | - Patricia B Petray
- Facultad de Medicina, IMPaM-Instituto de Investigaciones en Microbiología y Parasitología Médica (UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén", ANLIS/Malbran, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Sulleiro E, Muñoz-Calderon AQ, Schijman AG. Role of nucleic acid amplification assays in monitoring treatment response in chagas disease: Usefulness in clinical trials. Acta Trop 2019; 199:105120. [PMID: 31376368 DOI: 10.1016/j.actatropica.2019.105120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease has become a global health problem due to migration of infected people out of Latin America to non-endemic countries. For more than 40 years, only the nitroimidazole compounds Benznidazole and Nifurtimox, have been used for specific treatment of Trypanosoma cruzi infection with disappointing results, specially due to the long duration of treatment and adverse events in the chronic phase. In the last years, ergosterol inhibitors have been also proposed for specific treatment. Different randomized clinical trials were performed for evaluating their treatment efficacy and safety. One of the greatest concerns in clinical trials is to provide an early surrogate biomarker of response to trypanocidal chemotherapy. Serological response is slow and the classical parasitological tests have poor sensitivity and are time-consuming. Nowadays, PCR is the most helpful tool for assessing treatment response in a short period of time. Different protocols of PCR have been developed, being quantitative real time PCR based on amplification of repetitive satellite or minicircle DNA sequences plus an internal amplification standard, the mostly employed strategies in clinical trials. Standardized protocols and the use of an external quality assessment ensure adequate technical procedures and reliable data. Clinical trials have shown a significant reduction in parasite loads, reaching undetectable DNA levels in bloodstream after specific treatment, however events of treatment failure have also been reported. Treatment failure could be due to inadequate penetrance of the drugs into the affected tissues, to the presence of primary or secondary drug resistance of the infecting strains as well as to the existence of dormant parasite variants reluctant to drug action. The early diagnosis of drug resistance would improve clinical management of Chagas disease patients, allowing dictating alternative therapies with a combination of existing drugs or new anti-T. cruzi agents. The aim of this review was to describe the usefulness of detecting T.cruzi DNA by means of real time PCR assays, as surrogate biomarker in clinical trials for evaluating new drugs for CD or new regimens of available drugs and the possibility to detect treatment failure.
Collapse
|
13
|
Hybrids of Cinchona Alkaloids and Bile Acids as Antiparasitic Agents Against Trypanosoma cruzi. Molecules 2019; 24:molecules24173168. [PMID: 31480402 PMCID: PMC6749325 DOI: 10.3390/molecules24173168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/17/2022] Open
Abstract
The current chemotherapy of Chagas disease needs to be urgently improved. With this aim, a series of 16 hybrids of Cinchona alkaloids and bile acids were prepared by functionalization at position C-2 of the quinoline nucleus by a radical attack of a norcholane substituent via a Barton-Zard decarboxylation reaction. The antitrypanosomal activity of the hybrids was tested on different stages and strains of T. cruzi. In particular, eight out of 16 hybrids presented an IC50 ≤1 μg/mL against trypomastigotes of the CL Brener strain and/or a selectivity index higher than 10. These promising hybrids yielded similar results when tested on trypomastigotes from the RA strain of T. cruzi (discrete typing unit-DTU-VI). Surprisingly, trypomastigotes of the Y strain (DTU II) were more resistant to benznidazole and to most of the hybrids than those of the CL Brener and RA strains. However, the peracetylated and non-acetylated forms of the cinchonine/chenodeoxycholic bile acid conjugate 4f and 5f were the most trypanocidal hybrids against Y strain trypomastigotes, with IC50 values of 0.5 and 0.65 μg/mL, respectively. More importantly, promising results were observed in invasion assays using the Y strain, where hybrids 5f and 4f induced a significant reduction in intracellular amastigotes and on the release of trypomastigotes from infected cells.
Collapse
|