1
|
José-López R. Chemotherapy for the treatment of intracranial glioma in dogs. Front Vet Sci 2023; 10:1273122. [PMID: 38026627 PMCID: PMC10643662 DOI: 10.3389/fvets.2023.1273122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Gliomas are the second most common primary brain tumor in dogs and although they are associated with a poor prognosis, limited data are available relating to the efficacy of standard therapeutic options such as surgery, radiation and chemotherapy. Additionally, canine glioma is gaining relevance as a naturally occurring animal model that recapitulates human disease with fidelity. There is an intense comparative research drive to test new therapeutic approaches in dogs and assess if results translate efficiently into human clinical trials to improve the poor outcomes associated with the current standard-of-care. However, the paucity of data and controversy around most appropriate treatment for intracranial gliomas in dogs make comparisons among modalities troublesome. To further inform therapeutic decision-making, client discussion, and future studies evaluating treatment responses, the outcomes of 127 dogs with intracranial glioma, either presumed (n = 49) or histologically confirmed (n = 78), that received chemotherapy as leading or adjuvant treatment are reviewed here. This review highlights the status of current chemotherapeutic approaches to intracranial gliomas in dogs, most notably temozolomide and lomustine; areas of novel treatment currently in development, and difficulties to consensuate and compare different study observations. Finally, suggestions are made to facilitate evidence-based research in the field of canine glioma therapeutics.
Collapse
Affiliation(s)
- Roberto José-López
- Hamilton Specialist Referrals – IVC Evidensia, High Wycombe, United Kingdom
| |
Collapse
|
2
|
Lipska K, Gumieniczek A, Pietraś R, Filip AA. HPLC-UV and GC-MS Methods for Determination of Chlorambucil and Valproic Acid in Plasma for Further Exploring a New Combined Therapy of Chronic Lymphocytic Leukemia. Molecules 2021; 26:2903. [PMID: 34068372 PMCID: PMC8153269 DOI: 10.3390/molecules26102903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
High performance liquid chromatography with ultra-violet detection (HPLC-UV) and gas chromatography-mass spectrometry (GC-MS) methods were developed and validated for the determination of chlorambucil (CLB) and valproic acid (VPA) in plasma, as a part of experiments on their anticancer activity in chronic lymphocytic leukemia (CLL). CLB was extracted from 250 µL of plasma with methanol, using simple protein precipitation and filtration. Chromatography was carried out on a LiChrospher 100 RP-18 end-capped column using a mobile phase consisting of acetonitrile, water and formic acid, and detection at 258 nm. The lowest limit of detection LLOQ was found to be 0.075 μg/mL, showing sufficient sensitivity in relation to therapeutic concentrations of CLB in plasma. The accuracy was from 94.13% to 101.12%, while the intra- and inter-batch precision was ≤9.46%. For quantitation of VPA, a sensitive GC-MS method was developed involving simple pre-column esterification with methanol and extraction with hexane. Chromatography was achieved on an HP-5MSUI column and monitored by MS with an electron impact ionization and selective ion monitoring mode. Using 250 µL of plasma, the LLOQ was found to be 0.075 μg/mL. The accuracy was from 94.96% to 109.12%, while the intra- and inter-batch precision was ≤6.69%. Thus, both methods fulfilled the requirements of FDA guidelines for the determination of drugs in biological materials.
Collapse
Affiliation(s)
- Katarzyna Lipska
- Department of Medicinal Chemistry, Medical University of Lublin, 20-090 Lublin, Poland; (K.L.); (R.P.)
| | - Anna Gumieniczek
- Department of Medicinal Chemistry, Medical University of Lublin, 20-090 Lublin, Poland; (K.L.); (R.P.)
| | - Rafał Pietraś
- Department of Medicinal Chemistry, Medical University of Lublin, 20-090 Lublin, Poland; (K.L.); (R.P.)
| | - Agata A. Filip
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
3
|
Weber M, Han HH, Li BH, Odyniec ML, Jarman CEF, Zang Y, Bull SD, Mackenzie AB, Sedgwick AC, Li J, He XP, James TD. Pinkment: a synthetic platform for the development of fluorescent probes for diagnostic and theranostic applications. Chem Sci 2020; 11:8567-8571. [PMID: 34123116 PMCID: PMC8163375 DOI: 10.1039/d0sc02438d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reaction-based fluorescent-probes have proven successful for the visualisation of biological species in various cellular processes. Unfortunately, in order to tailor the design of a fluorescent probe to a specific application (i.e. organelle targeting, material and theranostic applications) often requires extensive synthetic efforts and the synthetic screening of a range of fluorophores to match the required synthetic needs. In this work, we have identified Pinkment-OH as a unique “plug-and-play” synthetic platform that can be used to develop a range of ONOO− responsive fluorescent probes for a variety of applications. These include theranostic-based applications and potential material-based/bioconjugation applications. The as prepared probes displayed an excellent sensitivity and selectivity for ONOO− over other ROS. In vitro studies using HeLa cells and RAW 264.7 macrophages demonstrated their ability to detect exogenously and endogenously produced ONOO−. Evaluation in an LPS-induced inflammation mouse model illustrated the ability to monitor ONOO− production in acute inflammation. Lastly, theranostic-based probes enabled the simultaneous evaluation of indomethacin-based therapeutic effects combined with the visualisation of an inflammation biomarker in RAW 264.7 cells. Pinkment, a resorufin based ONOO− selective and sensitive ‘plug and play’ fluorescence-based platform for in vitro and in vivo use, enables facile functionalisation for various imaging and theranostic applications.![]()
Collapse
Affiliation(s)
- Maria Weber
- Department of Chemistry, University of Bath Bath BA2 7AY UK .,Centre for Doctoral Training, Centre for Sustainable & Circular Technologies, University of Bath Bath BA2 7AY UK
| | - Hai-Hao Han
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,Key Laboratory for Advanced Materials & Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 PR China
| | - Bo-Han Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 PR China
| | | | | | - Yi Zang
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Amanda B Mackenzie
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK.,Centre for Therapeutic Innovation, University of Bath Bath BA2 7AY UK
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Jia Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 PR China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| |
Collapse
|