1
|
Shi Y, Gao J, Li X, Li J, Brierley G. Effects of disturbances on aboveground biomass of alpine meadow in the Yellow River Source Zone, Western China. Ecol Evol 2022; 12:e8640. [PMID: 35342553 PMCID: PMC8928900 DOI: 10.1002/ece3.8640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
A field experiment quantifies the impacts of two external disturbances (mowing-simulated grazing and number of pika) on aboveground biomass (AGB) in the Yellow River Source Zone from 2018 to 2020. AGB was estimated from drone images for 27 plots subject to three levels of each disturbance (none, moderate, and severe). The three mowing severities bear a close relationship with AGB and its annual change. The effects of pika disturbance on AGB change were overwhelmed by the significantly different AGB at different mowing severities (-.471 < r < -.368), but can still be identified by inspecting each mowing intensity (-.884 < r < -.626). The impact of severe mowing on AGB loss was more profound than that of severe pika disturbance in heavily disturbed plots, and the joint effects of both severe disturbances had the most impacts on AGB loss. However, pika disturbance made little difference to AGB change in the moderate and non-mowed plots. Mowing intensity weakens the relationship between pika population and AGB change, but pika disturbance hardly affects the relationship between mowing severity and AGB change. The effects of both disturbances on AGB were further complexified by the change in monthly mean temperature. Results indicate that reducing mowing intensity is more effective than controlling pika population in efforts to achieve sustainable grazing of heavily disturbed grassland.
Collapse
Affiliation(s)
- Yan Shi
- School of EnvironmentThe University of AucklandAucklandNew Zealand
| | - Jay Gao
- School of EnvironmentThe University of AucklandAucklandNew Zealand
| | - Xilai Li
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningChina
| | - Jiexia Li
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningChina
| | - Gary Brierley
- School of EnvironmentThe University of AucklandAucklandNew Zealand
| |
Collapse
|
2
|
Bao Z, Li C, Guo C, Xiang Z. Convergent Evolution of Himalayan Marmot with Some High-Altitude Animals through ND3 Protein. Animals (Basel) 2021; 11:ani11020251. [PMID: 33498455 PMCID: PMC7909448 DOI: 10.3390/ani11020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Himalayan marmot (Marmota himalayana) mainly lives on the Qinghai-Tibet Plateau and it adopts multiple strategies to adapt to high-altitude environments. According to the principle of convergent evolution as expressed in genes and traits, the Himalayan marmot might display similar changes to other local species at the molecular level. In this study, we obtained high-quality sequences of the CYTB gene, CYTB protein, ND3 gene, and ND3 protein of representative species (n = 20) from NCBI, and divided them into the marmot group (n = 11), the plateau group (n = 8), and the Himalayan marmot (n = 1). To explore whether plateau species have convergent evolution on the microscale level, we built a phylogenetic tree, calculated genetic distance, and analyzed the conservation and space structure of Himalayan marmot ND3 protein. The marmot group and Himalayan marmots were in the same branch of the phylogenetic tree for the CYTB gene and CYTB protein, and mean genetic distance was 0.106 and 0.055, respectively, which was significantly lower than the plateau group. However, the plateau group and the Himalayan marmot were in the same branch of the phylogenetic tree, and the genetic distance was only 10% of the marmot group for the ND3 protein, except Marmota flaviventris. In addition, some sites of the ND3 amino acid sequence of Himalayan marmots were conserved from the plateau group, but not the marmot group. This could lead to different structures and functional diversifications. These findings indicate that Himalayan marmots have adapted to the plateau environment partly through convergent evolution of the ND3 protein with other plateau animals, however, this protein is not the only strategy to adapt to high altitudes, as there may have other methods to adapt to this environment.
Collapse
Affiliation(s)
| | | | - Cheng Guo
- Correspondence: (C.G.); (Z.X.); Tel.: +86-731-5623392 (C.G. & Z.X.); Fax: +86-731-5623498 (C.G. & Z.X.)
| | - Zuofu Xiang
- Correspondence: (C.G.); (Z.X.); Tel.: +86-731-5623392 (C.G. & Z.X.); Fax: +86-731-5623498 (C.G. & Z.X.)
| |
Collapse
|
3
|
Zhou Y, Jing L, Jiao S, Chen A, Li N, Lei J, Yang M, Jia Y, Lu C, Lei G. Dynamics of greenhouse gas emission induced by different burrowing activities of fossorial vertebrates in the Qinghai-Tibetan Plateau alpine meadow ecosystem. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:115-122. [PMID: 31654197 DOI: 10.1007/s00484-019-01802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae) are endemic fossorial vertebrates in the Qinghai-Tibetan Plateau alpine meadow ecosystem. Their different burrowing activities together transform soil structure and then significantly change the landscape of meadow ecosystem. However, how their burrowing activities impact greenhouse gas (GHG) emissions and the pattern of GHG emissions between different types of tunnel burrowing still remain obscure. In this study, we conducted in situ measurements quantitatively investigating the impacts of the different burrowing activities of zokors and pikas on three main GHG CO2, CH4, and N2O from an alpine meadow ecosystem in southeastern Qinghai-Tibetan Plateau. Our results showed that zokor hummocks and pika burrows were sources of CO2 and N2O and sinks of CH4. Zokors burrowing increased N2O in the atmosphere, decreased CO2, and enhanced CH4 absorbing, while pikas burrowing increased N2O in the atmosphere and enhanced CH4 absorbing. Considering the controversial role of fossorial vertebrates in Qinghai-Tibetan Plateau, this study also shed lights on effective management of animal activities with the aim of stabilizing or increasing ecosystem carbon sequestration.
Collapse
Affiliation(s)
- Yan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Lei Jing
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shengwu Jiao
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Anping Chen
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nana Li
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jialin Lei
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yang
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yifei Jia
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Cai Lu
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Guangchun Lei
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|