1
|
Do TM, Horinek D, Matubayasi N. How ATP suppresses the fibrillation of amyloid peptides: analysis of the free-energy contributions. Phys Chem Chem Phys 2024; 26:11880-11892. [PMID: 38568008 DOI: 10.1039/d4cp00179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.
Collapse
Affiliation(s)
- Tuan Minh Do
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| |
Collapse
|
2
|
He M, Nian B, Shi J, Sun X, Du R, Tan CP, Xu YJ, Liu Y. Influence of extraction technology on rapeseed oil functional quality: a study on rapeseed polyphenols. Food Funct 2022; 13:270-279. [PMID: 34888592 DOI: 10.1039/d1fo01507a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extraction technology can influence the vegetable oil functional quality. Polyphenols in rapeseed oil have been proved to be beneficial for cardiovascular health. In this study, we evaluated the effect of extraction methods on the functional quality of rapeseed oil from the perspective of phenolic compounds. The results showed that hot pressing produces the highest amount of phenolic compounds in rapeseed oil. Its most abundant phenolic compound, sinapine (9.18 μg g-1), showed the highest activity in inhibiting anaerobic choline metabolism with an EC50 value of 1.9 mM, whose downstream products are related to cardiovascular diseases. Molecular docking and molecular dynamics (MD) simulations revealed that sinapine exhibits good binding affinity toward CutC, and CutC-sinapine is a stable complex with fewer conformational fluctuations and similar tightness. Taken together, hot pressing can be considered the best extraction method for rapeseed oil from the perspective of phenolic compounds.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Binbin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Xian Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Runfeng Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Seri Kembangan, Malaysia
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
3
|
Tran TT, Pan F, Tran L, Roland C, Sagui C. The F19W mutation reduces the binding affinity of the transmembrane Aβ 11-40 trimer to the membrane bilayer. RSC Adv 2021; 11:2664-2676. [PMID: 35424222 PMCID: PMC8693879 DOI: 10.1039/d0ra08837d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is linked to the aggregation of the amyloid-β protein (Aβ) of 40 or 42 amino acids. Lipid membranes are known to modulate the rate and mechanisms of the Aβ aggregation. Point mutations in Aβ can alter these rates and mechanisms. In particular, experiments show that F19 mutations influence the aggregation rate, but maintain the fibril structures. Here, we used molecular dynamics simulations to examine the effect of the F19W mutation in the 3Aβ11-40 trimer immersed in DPPC lipid bilayers submerged in aqueous solution. Substituting Phe by its closest (non-polar) aromatic amino acid Trp has a dramatic reduction in binding affinity to the phospholipid membrane (measured with respect to the solvated protein) compared to the wild type: the binding free energy of the protein-DPPC lipid bilayer increases by 40-50 kcal mol-1 over the wild-type. This is accompanied by conformational changes and loss of salt bridges, as well as a more complex free energy surface, all indicative of a more flexible and less stable mutated trimer. These results suggest that the impact of mutations can be assessed, at least partially, by evaluating the interaction of the mutated peptides with the lipid membranes.
Collapse
Affiliation(s)
- Thanh Thuy Tran
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Feng Pan
- Department of Statistics, Florida State University Tallahassee Florida USA
| | - Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang City 550000 Vietnam
| | - Christopher Roland
- Department of Physics, North Carolina State University Raleigh North Carolina USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
4
|
Nie RZ, Huo YQ, Yu B, Liu CJ, Zhou R, Bao HH, Tang SW. Molecular insights into the inhibitory mechanisms of gallate moiety on the Aβ 1-40 amyloid aggregation: A molecular dynamics simulation study. Int J Biol Macromol 2020; 156:40-50. [PMID: 32275992 DOI: 10.1016/j.ijbiomac.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most common form of neurodegenerative disease and the formation of Aβ amyloid aggregates has been widely demonstrated to be the principal cause of Alzheimer's disease. Our previous study and other studies suggested that the gallate moiety played an obligatory role in the inhibition process of naturally occurring polyphenols on Aβ amyloid fibrils formation. However, the detailed mechanisms were still unknown. Thus, in the present study, the gallic acid (GA) was specially selected and the molecular recognition mechanisms between GA molecules and Aβ1-40 monomer were examined and analyzed by molecular dynamics simulation. The in silico experiments revealed that GA significantly prevented the conformational changes of Aβ1-40 monomer with no β-sheet structure during the whole 100 ns. By analyzing the binding sites of GA molecules to Aβ1-40 monomer, we found that both hydrophilic and hydrophobic amino acid residues were participated in the binding of GA molecules to Aβ1-40 monomer. Moreover, results from the binding free energy analysis further demonstrated that the strength of polar interactions was significantly stronger than that of nonpolar interactions. We believed that our results could help to elucidate the underlying mechanisms of gallate moiety on the anti-amyloidogenic effects of polyphenols at the atomic level.
Collapse
Affiliation(s)
- Rong-Zu Nie
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Yin-Qiang Huo
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Bo Yu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Chuan-Ju Liu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Rui Zhou
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Hong-Hui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Shang-Wen Tang
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China.
| |
Collapse
|
5
|
Minh Hung H, Nguyen MT, Tran PT, Truong VK, Chapman J, Quynh Anh LH, Derreumaux P, Vu VV, Ngo ST. Impact of the Astaxanthin, Betanin, and EGCG Compounds on Small Oligomers of Amyloid Aβ 40 Peptide. J Chem Inf Model 2020; 60:1399-1408. [PMID: 32105466 DOI: 10.1021/acs.jcim.9b01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is experimental evidence that the astaxanthin, betanin, and epigallocatechin-3-gallate (EGCG) compounds slow down the aggregation kinetics and the toxicity of the amyloid-β (Aβ) peptide. How these inhibitors affect the self-assembly at the atomic level remains elusive. To address this issue, we have performed for each ligand atomistic replica exchange molecular dynamic (REMD) simulations in an explicit solvent of the Aβ11-40 trimer from the U-shape conformation and MD simulations starting from Aβ1-40 dimer and tetramer structures characterized by different intra- and interpeptide conformations. We find that the three ligands have similar binding free energies on small Aβ40 oligomers but very distinct transient binding sites that will affect the aggregation of larger assemblies and fibril elongation of the Aβ40 peptide.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| | - Vi Khanh Truong
- School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - James Chapman
- School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Le Huu Quynh Anh
- Department of Climate Change and Renewable Energy, Ho Chi Minh City University of Natural Resources and Environment, Ho Chi Minh City 700000, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
6
|
Abstract
The oligomerization of Aβ16-22 peptide, which is the hydrophobic core region of full-length Aβ1-42, causes Alzheimer's disease (AD). This progressive neurodegenerative disease affects over 44 million people worldwide. However, very few synthesized drug molecules are available to inhibit the aggregation of Aβ. Recently, experimental studies have shown that the biological ATP molecule prevents Aβ fibrillation at the millimolar scale; however, the significance of ATP molecules on Aβ fibrillation and the mechanism behind it remain elusive. We have carried out a total of 7.5 μs extensive all-atom molecular dynamics and 8.82 μs of umbrella sampling in explicit water using AMBER14SB, AMBER99SB-ILDN, and AMBER-FB15 force fields for Aβ16-22 peptide, to investigate the role of ATP on the disruption of Aβ16-22 prefibrils. From various analyses, such as secondary structure analysis, residue-wise contact map, SASA, and interaction energies, we have observed that, in the presence of ATP, the aggregation of Aβ16-22 peptide is very unfavorable. Moreover, the biological molecule ATP interacts with the Aβ16-22 peptide via hydrogen bonding, π-π stacking, and NH-π interactions which, ultimately, prevent the aggregation of Aβ16-22 peptide. Hence, we assume that the deficiency of ATP may cause Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
7
|
Ngo ST, Nguyen TH, Tung NT, Nam PC, Vu KB, Vu VV. Oversampling Free Energy Perturbation Simulation in Determination of the Ligand‐Binding Free Energy. J Comput Chem 2019; 41:611-618. [DOI: 10.1002/jcc.26130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational BiophysicsTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational BiophysicsTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science & Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Pham Cam Nam
- Department of Chemical EngineeringThe University of Da Nang, University of Science and Technology Da Nang City Vietnam
| | - Khanh B. Vu
- NTT Hi‐Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Van V. Vu
- NTT Hi‐Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Prediction of AChE-ligand affinity using the umbrella sampling simulation. J Mol Graph Model 2019; 93:107441. [DOI: 10.1016/j.jmgm.2019.107441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 11/18/2022]
|
9
|
Tung N, Derreumaux P, Vu VV, Nam PC, Ngo ST. C-Terminal Plays as the Possible Nucleation of the Self-Aggregation of the S-Shape Aβ 11-42 Tetramer in Solution: Intensive MD Study. ACS OMEGA 2019; 4:11066-11073. [PMID: 31460204 PMCID: PMC6648102 DOI: 10.1021/acsomega.9b00992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Amyloid beta (Aβ) peptides are characterized as the major factors associated with neuron death in Alzheimer's disease, which is listed as the most common form of neurodegeneration. Disordered Aβ peptides are released from proteolysis of the amyloid precursor protein. The Aβ self-assembly process roughly takes place via five steps: disordered forms → oligomers → photofibrils → mature fibrils → plaques. Although Aβ fibrils are often observed in patient brains, oligomers were recently indicated to be major neurotoxic elements. In this work, the neurotoxic compound S-shape Aβ11-42 tetramer (S4Aβ11-42) was investigated over 10 μs of unbiased MD simulations. In particular, the S4Aβ11-42 oligomer adopted a high dynamics structure, resulting in unsuccessful determination of their structures in experiments. The C-terminal was suggested as the possible nucleation of the Aβ42 aggregation. The sequences 27-35 and 39-40 formed rich β-content, whereas other residues mostly adopted coil structures. The mean value of the β-content over the equilibrium interval is ∼42 ± 3%. Furthermore, the dissociation free energy of the S4Aβ11-42 peptide was predicted using a biased sampling method. The obtained free energy is ΔG US = -58.44 kcal/mol which is roughly the same level as the corresponding value of the U-shape Aβ17-42 peptide. We anticipate that the obtained S4Aβ11-42 structures could be used as targets for AD inhibitor screening over the in silico study.
Collapse
Affiliation(s)
- Nguyen
Thanh Tung
- Institute
of Materials Science, Vietnam Academy of
Science and Technology, Hanoi 10307, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical and Chemistry, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Laboratoire
de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Van V. Vu
- NTT
Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Pham Cam Nam
- Department
of Chemical Engineering, The University
of Da Nang—University of Science and Technology, Da Nang City 550000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang
University, Ho Chi
Minh City 758307, Vietnam
| |
Collapse
|
10
|
Ngo ST, Mai BK, Derreumaux P, Vu VV. Adequate prediction for inhibitor affinity of Aβ 40 protofibril using the linear interaction energy method. RSC Adv 2019; 9:12455-12461. [PMID: 35515829 PMCID: PMC9063661 DOI: 10.1039/c9ra01177c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
The search for efficient inhibitors targeting Aβ oligomers and fibrils is an important issue in Alzheimer's disease treatment. As a consequence, an accurate and computationally cheap approach to estimate the binding affinity for many ligands interacting with Aβ peptides is very important. Here, the calculated binding free energies of 30 ligands interacting with 12Aβ11-40 peptides using the linear interaction energy (LIE) approach are found to be in good correlation with experimental data (R = 0.79). The binding affinities of these complexes are also calculated by using free energy perturbation (FEP) and molecular mechanic/Poisson-Boltzmann surface area (MM/PBSA) methods. The time-consuming FEP method provides results with similar correlation (R = 0.72), whereas MM/PBSA calculations show very low correlation with experimental data (R = 0.27). In all complexes, van der Waals interactions contribute much more than electrostatic interactions. The LIE model, which is much less time-consuming than both the FEP and MM/PBSA methods, opens the door to accurate and rapid affinity prediction of ligands with Aβ peptides and the design of new ligands.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Binh Khanh Mai
- Institute for Computational Science and Technology (ICST), Quang Trung Software City Ho Chi Minh City Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot 13 rue Pierre et Marie Curie 75005 Paris France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
11
|
Tran PT, Hoang VH, Lee J, Hien TTT, Tung NT, Ngo ST. In vitroandin silicodetermination of glutaminyl cyclase inhibitors. RSC Adv 2019; 9:29619-29627. [PMID: 35531555 PMCID: PMC9071946 DOI: 10.1039/c9ra05763c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease currently. It is widely accepted that AD is characterized by the self-assembly of amyloid beta (Aβ) peptides. The human glutaminyl cyclase (hQC) enzyme is characterized by association with Aβ peptide generation. The development of hQC inhibitors could prevent the self-aggregation of Aβ peptides, resulting in impeding AD. Utilizing structural knowledge of the hQC substrates and known hQC inhibitors, new heterocyclic and peptidomimetic derivatives were synthesized and were able to inhibit the hQC enzyme. The inhibiting abilities of these compounds were evaluated using a fluorometric assay. The binding mechanism at the atomic level was estimated using molecular docking, free energy perturbation, and quantum chemical calculation methods. The predicted log(BBB) and human intestinal absorption values indicated that these compounds are able to permeate the blood–brain barrier and be well-absorbed through the gastrointestinal tract. Overall, 5,6-dimethoxy-N-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1H-benzo[d]imidazol-2-amine (1_2) was indicated as a potential drug for AD treatment. Rational design of new hQC inhibitors.![]()
Collapse
Affiliation(s)
- Phuong-Thao Tran
- Department of Pharmaceutical Chemistry
- Hanoi University of Pharmacy
- Hanoi
- Vietnam
| | - Van-Hai Hoang
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry
- College of Pharmacy
- Seoul National University
- Seoul
- Korea
| | | | - Nguyen Thanh Tung
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
12
|
Ngo ST, Thu Phung HT, Vu KB, Vu VV. Atomistic investigation of an Iowa Amyloid-β trimer in aqueous solution. RSC Adv 2018; 8:41705-41712. [PMID: 35558787 PMCID: PMC9091969 DOI: 10.1039/c8ra07615d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of Amyloid beta (Aβ) peptides are widely accepted to associate with Alzheimer's disease (AD) via several proposed mechanisms. Because Aβ oligomers exist in a complicated environment consisting of various forms of Aβ, including oligomers, protofibrils, and fibrils, their structure has not been well understood. The negatively charged residue D23 is one of the critical residues of the Aβ peptide as it is located in the central hydrophobic domain of the Aβ N-terminal and forms a salt-bridge D23-K28, which helps stabilize the loop domain. In the familial Iowa (D23N) mutant, the total net charge of Aβ oligomers decreases, resulting in the decrease of electrostatic repulsion between D23N Aβ monomers and thus the increase in their self-aggregation rate. In this work, the impact of the D23N mutation on 3Aβ11–40 trimer was characterized utilizing temperature replica exchange molecular dynamics (REMD) simulations. Our simulation reveals that D23N mutation significantly enhances the affinity between the constituting chains in the trimer, increases the β-content (especially in the sequence 21–23), and shifts the β-strand hydrophobic core from crossing arrangement to parallel arrangement, which is consistent with the increase in self-aggregation rate. Molecular docking indicates that the Aβ fibril-binding ligands bind to the D23N and WT forms at different poses. These compounds prefer to bind to the N-terminal β-strand of the D23N mutant trimer, while they mostly bind to the N-terminal loop region of the WT. It is important to take into account the difference in the binding of ligands to mutant and wild type Aβ peptides in designing efficient inhibitors for various types of AD. Amyloid beta peptide oligomers are believed to play key roles in Alzheimer's disease pathogenesis. D23N mutation significantly changes their structure and how they bind potential inhibitors.![]()
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Khanh B. Vu
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | - Van V. Vu
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| |
Collapse
|