Sohaib M, Zahir ZA, Khan MY, Ans M, Asghar HN, Yasin S, Al-Barakah FNI. Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat.
Saudi J Biol Sci 2019;
27:777-787. [PMID:
32127752 PMCID:
PMC7042621 DOI:
10.1016/j.sjbs.2019.12.034]
[Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 11/27/2022] Open
Abstract
The application of liquid bacterial consortia to soil under natural conditions may fail due to various environmental constraints. In this study, the suitability and efficiency of compost, biogas slurry, crushed corn cob, and zeolite as carriers to support the survival of plant growth-promoting rhizobacteria (PGPR) and improve the performance of multi-strain bacterial consortia to mitigate the effects of salinity stress on wheat under pot conditions were evaluated. The survival of strains of Pseudomonas putida, Serratia ficaria, and Pseudomonas fluorescens labelled with gusA was evaluated for up to 90 days. Seeds coated with different carrier-based formulations of multi-strain consortia were sown in pots at three different salinity levels (1.53, 10, and 15 dS m−1). Results showed that salinity stress significantly reduced wheat growth, yield, gas exchange, and ionic and biochemical parameter values, but the 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing multi-strain consortium used mitigated the inhibitory effects of salinity on plant growth and yield parameters. However, carrier-based inoculation further improved the efficacy of multi-strain consortium inoculation and significantly (P < 0.05) increased the growth, yield, and physiological parameters value of wheat at all salinity levels. On the basis of the observed trends in survival and the outcomes of the pot trials, the inoculation of multi-strain consortia in compost and biogas slurry carriers resulted in more successful wheat growth under salinity stress compared to that in the rest of the treatments tested.
Collapse