1
|
Lee CY, Tsai HN, Cheng EH, Lee TH, Lin PY, Lee MS, Lee CI. Transcriptomic Analysis of Vitrified-Warmed vs. Fresh Mouse Blastocysts: Cryo-Induced Physiological Mechanisms and Implantation Impact. Int J Mol Sci 2024; 25:8658. [PMID: 39201343 PMCID: PMC11354596 DOI: 10.3390/ijms25168658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Blastocyst vitrification has significantly improved embryo transfer methods, leading to higher implantation success rates and better pregnancy outcomes in subsequent frozen embryo transfer cycles. This study aimed to simulate the transcriptional changes caused by vitrifying human blastocysts using mouse blastocysts as a model and to further investigate these changes' effects. Utilizing a human vitrification protocol, we implanted both vitrified and fresh embryos into mice. We observed the implantation success rates and performed transcriptomic analysis on the blastocysts. To validate the results from messenger RNA sequencing, we conducted reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) to measure the expression levels of specific genes. Based on mRNA profiling, we predicted the microRNAs responsible for the regulation and used qPCR basic microRNA assays for validation. Our observations revealed a higher implantation success rate for vitrified embryos than fresh embryos. Transcriptomic analysis showed that vitrified-warmed blastocysts exhibited differentially expressed genes (DEGs) primarily associated with thermogenesis, chemical carcinogenesis-reactive oxygen species, oxidative phosphorylation, immune response, and MAPK-related signaling pathways. RT-qPCR confirmed increased expression of genes such as Cdk6 and Nfat2, and decreased expression of genes such as Dkk3 and Mapk10. Additionally, gene-microRNA interaction predictions and microRNA expression analysis identified twelve microRNAs with expression patterns consistent with the predicted results, suggesting potential roles in uterine epithelial cell adhesion, trophectoderm development, invasive capacity, and immune responses. Our findings suggest that vitrification induces transcriptomic changes in mouse blastocysts, and even small changes in gene expression can enhance implantation success. These results highlight the importance of understanding the molecular mechanisms underlying vitrification to optimize embryo transfer techniques and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Chi-Ying Lee
- Genetic Diagnosis Laboratory, Lee Women’s Hospital, Taichung 40652, Taiwan; (C.-Y.L.); (H.-N.T.); (E.-H.C.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Ni Tsai
- Genetic Diagnosis Laboratory, Lee Women’s Hospital, Taichung 40652, Taiwan; (C.-Y.L.); (H.-N.T.); (E.-H.C.)
| | - En-Hui Cheng
- Genetic Diagnosis Laboratory, Lee Women’s Hospital, Taichung 40652, Taiwan; (C.-Y.L.); (H.-N.T.); (E.-H.C.)
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pin-Yao Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chun-I Lee
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
2
|
Wang XY, Gao Y, Liu HR, Wang T, Feng ML, Xue FR, Ding K, Yang Q, Jiang ZY, Sun D, Song CR, Zhang XJ, Liang CG. C-Phycocyanin improves the quality of goat oocytes after in vitro maturation and vitrification. Theriogenology 2024; 222:66-79. [PMID: 38626583 DOI: 10.1016/j.theriogenology.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
In vitro maturation (IVM) and cryopreservation of goat oocytes are important for establishing a valuable genetic bank for domesticated female animals and improving livestock reproductive efficiency. C-Phycocyanin (PC) is a Spirulina extract with antioxidant, antiinflammatory, and radical scavenging properties. However, whether PC has positive effect on goat oocytes IVM or developmental competence after vitrification is still unknown. In this study, we found that first polar body extrusion (n = 293), cumulus expansion index (n = 269), and parthenogenetic blastocyst formation (n = 281) were facilitated by adding 30 μg/mL PC to the oocyte maturation medium when compared with the control groups and that supplemented with 3, 10, 100 or 300 μg/mL PC (P < 0.05). Although PC supplementation did not affect spindle formation or chromosome alignment (n = 115), it facilitated or improved cortical granules migration (n = 46, P < 0.05), mitochondria distribution (n = 39, P < 0.05), and mitochondrial membrane potential (n = 46, P < 10-4). Meanwhile, supplementation with 30 μg/mL PC in the maturation medium could significantly inhibit the reactive oxygen species accumulation (n = 65, P < 10-4), and cell apoptosis (n = 42, P < 0.05). In addition, PC increased the oocyte mRNA levels of GPX4 (P < 0.01), and decreased the mRNA and protein levels of BAX (P < 0.01). Next, we investigated the effect of PC supplementation in the vitrification solution on oocyte cryopreservation. When compared with the those equilibrate in the vitrification solution without PC, recovered oocytes in the 30 μg/mL PC group showed higher ratios of normal morphology (n = 85, P < 0.05), survival (n = 85, P < 0.05), first polar body extrusion (n = 62, P < 0.05), and parthenogenetic blastocyst formation (n = 107, P < 0.05). Meanwhile, PC supplementation of the vitrification solution increased oocyte mitochondrial membrane potential (n = 53, P < 0.05), decreased the reactive oxygen species accumulation (n = 73, P < 0.05), promoted mitochondria distribution (n = 58, P < 0.05), and inhibited apoptosis (n = 46, P < 10-3). Collectively, our findings suggest that PC improves goat oocyte IVM and vitrification by reducing oxidative stress and early apoptosis, which providing a novel strategy for livestock gamete preservation and utilization.
Collapse
Affiliation(s)
- Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yang Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Hao-Ran Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Teng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Meng-Lei Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Fang-Rui Xue
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Kang Ding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Qi Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Zhao-Yu Jiang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dui Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Chun-Ru Song
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
3
|
Aburada N, Ito J, Inoue Y, Yamamoto T, Hayashi M, Teramoto N, Okada Y, Koshiishi Y, Shirasuna K, Iwata H. Effect of paternal aging and vitrification on mitochondrial DNA copy number and telomere length of mouse blastocysts. J Reprod Dev 2024; 70:65-71. [PMID: 38267053 PMCID: PMC11017102 DOI: 10.1262/jrd.2023-079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, we examined the effects of paternal aging on the mitochondrial DNA copy number (mt-cn), telomere length (TL), and gene expression in mouse embryos. The effects of vitrification on the mt-cn and TL of the embryos derived from young and aged male parents (YF and AF, respectively) were examined. C57BL/6N male mice were used for embryo production at 13-23 and 50-55 weeks of age. Two-cell stage embryos were collected from the oviducts of superovulated female mice (8-15 weeks old) and cultured for 24 h until the 8-cell stage, followed by embryo vitrification. Fresh and vitrified-warmed embryos were incubated for 2 days until the blastocyst stage, and mt-cn and TL were investigated. The cell-free mitochondrial DNA copy number (cf-mt-cn) in the spent culture medium (SCM) of the embryos was then investigated. RNA sequencing of blastocysts revealed that metabolic pathways, including oxidative phosphorylation and mTOR pathways, were enriched in differentially expressed genes. The mt-cn and TL of AF-derived blastocysts were lower and shorter, respectively, than those of YF-derived blastocysts. Paternal aging did not affect the blastocyst rate after vitrification. Vitrification of the 8-cell stage embryos did not affect the mt-cn of the blastocysts. However, it increased the cf-mt-cn (cell-free mt-cn) in the SCM of both YF- and AF-derived embryos. Vitrification did not affect the TL of either YF- or AF-derived embryos. Thus, paternal aging affected the mt-cn and TL of the embryos, but vitrification did not affect these parameters in either age groups.
Collapse
Affiliation(s)
- Nao Aburada
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yuki Inoue
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | - Noko Teramoto
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yuri Okada
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | - Hisataka Iwata
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
4
|
Hai G, Bai J, Liu Y, Li J, Liu A, Wang J, Liu Q, Liu W, Wan P, Fu X. Superior performance of biocomposite nanoparticles PLGA-RES in protecting oocytes against vitrification stimuli. Front Bioeng Biotechnol 2024; 12:1376205. [PMID: 38529403 PMCID: PMC10961424 DOI: 10.3389/fbioe.2024.1376205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Irreversible cryogenic damage caused by oocyte vitrification limits its widespread use in female fertility preservation. In recent years, nanoparticles (NPs) have gained great attention as potential alternatives in protecting oocytes against cryoinjuries. In this paper, a novel composite nanoparticle, poly (lactic-co-glycolic acid)-resveratrol (PLGA-RES) was designed to improve the biocompatibility and sustained release properties by encapsulating natural antioxidant RES into PLGA NPs. Firstly, biotoxicity and oxidation resistance of PLGA-RES were determined, and the results showed that PLGA-RES had nontoxic effect on oocyte survival during in vitro maturation (IVM) (97.08% ± 0.24% vs. 98.89% ± 1.11%, p > 0.05). Notably, PLGA-RES even increased maturation (65.10% ± 4.11% vs. 52.85% ± 2.87%, p < 0.05) and blastocyst rate (56.13% ± 1.36% vs. 40.91% ± 5.85%, p < 0.05). Moreover, the reduced reactive oxygen species (ROS) level (13.49 ± 2.30 vs. 34.07 ± 3.30, p < 0.01), increased glutathione (GSH) (44.13 ± 1.57 vs. 37.62 ± 1.79, p < 0.01) and elevated mitochondrial membrane potential (MMP) levels (43.10 ± 1.81 vs. 28.52 ± 1.25, p < 0.01) were observed in oocytes treated with PLGA-RES when compared with that of the control group. Subsequently, the role of PLGA-RES played in oocytes during vitrification was systematically evaluated. The results showed that the addition of PLGA-RES during vitrification and thawing significantly improved the survival rate (80.42% ± 1.97% vs. 75.37% ± 1.3%, p < 0.05). Meanwhile, increased GSH (15.09 ± 0.86 vs. 14.51 ± 0.78, p < 0.01) and mitochondrial membrane potential (22.56 ± 3.15 vs. 6.79 ± 0.60, p < 0.01), decreased reactive oxygen species levels (52.11 ± 2.95 vs. 75.41 ± 7.23, p < 0.05) and reduced mitochondrial abnormality distribution rate (25.00% ± 0.29% vs. 33.33% ± 1.15%, p < 0.01) were assessed in vitrified MII oocytes treated with PLGA-RES. Furthermore, transcriptomic analyses demonstrated that PLGA-RES participated in endocytosis and PI3K/AKT/mTOR pathway regulation, which was verified by the rescued expression of ARRB2 and ULK3 protein after PLGA-RES treatment. In conclusion, PLGA-RES exhibited potent antioxidant activity, and could be used as an efficacious strategy to improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Guiping Hai
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jiachen Bai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weijun Liu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Kurzella J, Miskel D, Rings F, Tholen E, Tesfaye D, Schellander K, Salilew-Wondim D, Held-Hoelker E, Große-Brinkhaus C, Hoelker M. Mitochondrial bioenergetic profiles of warmed bovine blastocysts are typically altered after cryopreservation by slow freezing and vitrification. Theriogenology 2024; 214:21-32. [PMID: 37839094 DOI: 10.1016/j.theriogenology.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
The widespread use of cryopreserved in vitro produced (IVP) bovine embryos is limited due to their low post-warming viability compared to their ex vivo derived counterparts. Therefore, the present study aimed to analyse in detail the consequences of cryopreservation (vitrification and slow freezing) on the bioenergetic profile of the embryo and its mitochondria. To accomplish that, day 7 IVP embryos were separated in a non-cryopreserved control group (fresh, n = 120, 12 replicates) or were either slow frozen (slow frozen, n = 60, 6 replicates) or vitrified (vitrified, n = 60, 6 replicates). An in-depth analysis of the bioenergetic profiles was then performed on these 3 groups, analysing pools of 10 embryos revealing that embryo cryopreservation both via vitrification and slow freezing causes profound changes in the bioenergetic profile of bovine embryos. Noteworthy, fresh embryos demonstrate a significantly (P < 0.05) higher oxygen consumption rate (OCR) compared to vitrified and slow frozen counterparts (0.858 ± 0.039 vs. 0.635 ± 0.048 vs. 0.775 ± 0.046 pmol/min/embryo). This was found to be largely due to significantly reduced mitochondrial oxygen consumption in both vitrified and deep-frozen embryos compared to fresh counterparts (0.541 ± 0.057 vs. 0.689 ± 0.044 vs. 0.808 ± 0.025 pmol/min/embryo). Conversely, slow-frozen thawed blastocysts showed 1.8-fold (P < 0.05) higher non-mitochondrial OCR rates compared to fresh embryos. Maximum mitochondrial respiration of vitrified and slow-frozen embryos was significantly reduced by almost 1.6-fold compared to fresh embryos and the proportion of ATP-linked respiration showed significantly lower values in vitrified thawed embryos compared to fresh embryos (1.1-fold, P < 0.05). Likewise, vitrification-warming and freeze-thawing reduced reactive glycolytic capacity (1.4 fold, 1.2-fold)as well as compensatory glycolytic capacity to provide energy in response to mitochondrial deficiency (1.3-fold and 1.2-fold, P < 0.05). In conclusion, the present study has, to the best of our knowledge, identified for the first time a comprehensive overview of typical altered metabolic features of the bioenergetic profile of bovine embryos after cryopreservation, which have great potential to explain the detrimental effects of cryopreservation on embryo viability. Avoidance of these detrimental effects through technical improvements is therefore suggested to be mandatory to improve the viability of bovine embryos after cryopreservation-warming.
Collapse
Affiliation(s)
- Jessica Kurzella
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, Fort Collins, CO, 80521, United States.
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany; Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Christine Große-Brinkhaus
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| |
Collapse
|
6
|
Ito J, Iwata H. Age-related advanced glycation end-product accumulation impairs mitochondrial regulation after vitrification†. Biol Reprod 2023; 109:271-281. [PMID: 37399120 DOI: 10.1093/biolre/ioad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Vitrification is an important assisted reproductive technology, although it induces mitochondrial dysfunction in embryos. Herein, we aimed to investigate whether age-associated accumulation of advanced glycation end-products (AGEs) in oocytes impairs the recovery of embryos from cryopreservation-induced mitochondrial dysfunction/damage. Mouse eight-cell stage embryos developed in vitro were vitrified and warmed and incubated up to the blastocyst stage. AGE levels in oocytes were higher in both aged mice and AGE accumulation mouse models (MGO-mice) than those in young and control mice. In addition, the level of SIRT1 upregulation was lower for embryos of aged and MGO-mice than that for embryos of young and control mice. The highest mitochondrial DNA (mtDNA) content was detected in blastocysts derived from vitrified embryos of aged and MGO-mice. The spent culture medium of blastocysts derived from both aged and MGO-mice contained higher mtDNA content than that of the blastocysts derived from young and control mice. EX527 increased mtDNA content in the spent culture medium of vitrified embryos derived from young mice. In addition, p62 aggregate levels were higher in vitrified embryos of control mice than those in vitrified embryos of MGO-mice. The SIRT1 activator, resveratrol, increased p62 aggregation levels in vitrified embryos derived from young and aged mice, whereas vitrification did not affect p62 aggregation levels in embryos from aged mice. Therefore, age-associated AGE accumulation induces decreased responsive SIRT1 upregulation following vitrified-warmed treatment and impairs mitochondrial quality control activity in vitrified embryos.
Collapse
Affiliation(s)
- Jun Ito
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
7
|
Naspinska R, Moreira da Silva MH, Moreira da Silva F. Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review. J Dev Biol 2023; 11:36. [PMID: 37754838 PMCID: PMC10532407 DOI: 10.3390/jdb11030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
In vitro maturation (IVM) is one of the most important steps in in vitro embryo production (IVEP). It is a complicated procedure in which nuclear and cytoplasmatic changes in oocytes appear. In order to carry out the in vitro maturation procedure correctly, it is necessary to provide the oocytes with as close to a natural (in vivo) environment as possible. Many factors contribute to the overall poor quality of in vitro-matured oocytes. One important factor may be oxidative stress (OS). The generation of oxidants, such as reactive oxygen species, is common under culture conditions. The solution for OC treatment and prevention is antioxidants. In the last 5 years, many studies have examined different antioxidants and their effects on in vitro maturation of oocytes and embryo production. The aim of this systematic review was to present the achievements of scientific research in the last five years, in which the effects of many antioxidants were tested on bovine oocyte maturation and embryo production.
Collapse
Affiliation(s)
| | | | - Fernando Moreira da Silva
- Animal Reproduction, Centro de Investigação e Tecnologia Agrária dos Açores IITA-A, Faculty of Agricultural and Environmental Sciences, University of the Azores, 9701-851 Angra do Heroísmo, Portugal; (R.N.); (M.H.M.d.S.)
| |
Collapse
|
8
|
Ito J, Kageyama M, Hara S, Sato T, Shirasuna K, Iwata H. Paternal aging impacts mitochondrial DNA content and telomere length in mouse embryos. Mitochondrion 2023; 68:105-113. [PMID: 36513246 DOI: 10.1016/j.mito.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) copy number and telomere length (TL) in blastocysts derived from the same male mice at young (10-19-week-old) and aged (40-49-week-old) time points and mtDNA and TL in the hearts of offspring derived from young and aged male mice were examined. Paternal aging correlated with reduced mtDNA and TL in blastocysts. mtDNA and TL were significantly correlated, which was also observed in bovine blastocysts. Moreover, mtDNA in the heart of offspring was reduced in male mice with paternal aging. In conclusion, paternal aging affects embryonic mtDNA and TL, potentially impacting their offspring.
Collapse
Affiliation(s)
- Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Mio Kageyama
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Takuya Sato
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Atsugi, Kanagawa 243-0034, Japan.
| |
Collapse
|
9
|
RA33, an analogue of resveratrol, improves the development of in vitro-fertilized bovine embryos. ZYGOTE 2022; 30:891-894. [PMID: 36148879 DOI: 10.1017/s0967199422000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oxidative stress is an undesirable effect of in vitro culture, which requires antioxidant supplementation. This study investigated the analogue of resveratrol (RA33) as an alternative to resveratrol, an antioxidant molecule, for the in vitro culture of in vitro-fertilized bovine embryos. The effect of different concentrations of RA33 on embryo development was evaluated and a comparison between RA33 and resveratrol was performed. The cleavage rate was higher (P < 0.05) with 2.5 μM (69.0 ± 4.4%) than at 0, 0.1 or 0.5 μM RA33 (62.1 ± 2.0%, 60.7 ± 5.9% and 56.7 ± 5.8%, respectively). The blastocyst rates on days 7 and 8 post-fertilization with 2.5 μM RA33 (19.4 ± 3.3% and 24.6 ± 3.3%, respectively) were higher (P < 0.05) than for 0 μM (12.4 ± 2.5% and 15.2±2.5%, respectively). When 2.5 μM RA33 was compared with 0.5 μM resveratrol, similar (P > 0.05) cleavage and blastocyst rates were found between them, but the cleavage rate was higher (P < 0.05) in the control (80.8 ± 3.4%) than for the resveratrol treatment (76.4 ± 3.6%). The numbers of apoptotic cells and the apoptotic index were lower (P < 0.05) with RA33 (6.5 ± 0.6 cells and 6.4 ± 0.7%, respectively) and resveratrol (5 ± 0.8 cells and 5.5 ± 1.0%, respectively) than in the control group (9.8 ± 1.2 cells and 8.9 ± 1.1%, respectively). In conclusion, RA33 can enhance the preimplantation development of in vitro-fertilized bovine embryos and be an alternative to resveratrol in embryo culture medium.
Collapse
|
10
|
Resveratrol Protects against Zearalenone-Induced Mitochondrial Defects during Porcine Oocyte Maturation via PINK1/Parkin-Mediated Mitophagy. Toxins (Basel) 2022; 14:toxins14090641. [PMID: 36136579 PMCID: PMC9503427 DOI: 10.3390/toxins14090641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria hold redox homeostasis and energy metabolism as a crucial factor during oocyte maturation, while the exposure of estrogenic mycotoxin zearalenone causes developmental incapacity in porcine oocyte. This study aimed to reveal a potential resistance of phytoalexin resveratrol against zearalenone during porcine oocyte maturation and whether its mechanism was related with PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Porcine oocytes were exposed to 20 μM zearalenone with or without 2 μM resveratrol during in vitro maturation. As for the results, zearalenone impaired ultrastructure of mitochondria, causing mitochondrial depolarization, oxidative stress, apoptosis and embryonic developmental incapacity, in which mitophagy was induced in response to mitochondrial dysfunction. Phytoalexin resveratrol enhanced mitophagy through PINK1/Parkin in zearalenone-exposed oocytes, manifesting as enhanced mitophagy flux, upregulated PINK1, Parkin, microtubule-associated protein light-chain 3 beta-II (LC3B-II) and downregulated substrates mitofusin 2 (MFN2), voltage-dependent anion channels 1 (VDAC1) and p62 expressions. Resveratrol redressed zearalenone-induced mitochondrial depolarization, oxidative stress and apoptosis, and accelerated mitochondrial DNA copy during maturation, which improved embryonic development. This study offered an antitoxin solution during porcine oocyte maturation and revealed the involvement of PINK1/Parkin-mediated mitophagy, in which resveratrol mitigated zearalenone-induced embryonic developmental incapacity.
Collapse
|
11
|
Gao Z, Li W, Zhang H, Yang Z, Zhao X, Wei Q, Ma B. Effects of nylon mesh vitrification on the cytoskeleton, mitochondria, and aquaporins of mouse 2-cell embryos. In Vitro Cell Dev Biol Anim 2022; 58:638-642. [PMID: 36074254 DOI: 10.1007/s11626-022-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wei Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhenshan Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
12
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Luo Y, Zhou D, Liu H, Wan P, Hou Y, Fu X. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol 2022; 13:95. [PMID: 35971139 PMCID: PMC9380387 DOI: 10.1186/s40104-022-00742-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation. Antioxidants were always used to antagonist the oxidative stress caused by vitrification. However, the comprehensive mechanism underlying the protective role of antioxidants has not been studied. Procyanidin B2 (PCB2) is a potent natural antioxidant and its functions in response to vitrification are still unknown. In this study, the effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored, and the mechanisms underlying the protective role of PCB2 were systematically elucidated. RESULTS Vitrification induced a marked decline in oocyte quality, while PCB2 could improve oocyte viability and further development after parthenogenetic activation. A subsequent study indicated that PCB2 effectively attenuated vitrification-induced oxidative stress, rescued mitochondrial dysfunction, and improved cell viability. Moreover, PCB2 also acts as a cortical tension regulator apart from strong antioxidant properties. Increased cortical tension caused by PCB2 would maintain normal spindle morphology and promote migration, ensure correct meiosis progression and finally reduce the aneuploidy rate in vitrified oocytes. Further study reveals that ATP biosynthesis plays a crucial role in cortical tension regulation, and PCB2 effectively increased the cortical tension through the electron transfer chain pathway. Additionally, PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and further improve blastocyst quality. What's more, targeted metabolomics shows that PCB2 has a beneficial effect on blastocyst formation by mediating saccharides and amino acids metabolism. CONCLUSIONS Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochondria-mediated cortical tension regulation.
Collapse
Affiliation(s)
- Qingrui Zhuan
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jun Li
- grid.452458.aDepartment of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Xingzhu Du
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Luyao Zhang
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwen Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dan Zhou
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Hongyu Liu
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Wan
- grid.469620.f0000 0004 4678 3979State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| | - Yunpeng Hou
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China. .,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China.
| |
Collapse
|
13
|
Aoki S, Inoue Y, Shinozawa A, Tanaka K, Shirasuna K, Iwata H. miR-17-5p in bovine oviductal fluid affects embryo development. Mol Cell Endocrinol 2022; 551:111651. [PMID: 35452772 DOI: 10.1016/j.mce.2022.111651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
Abstract
This study identified microRNAs (miRNAs) in bovine oviductal fluids (OFs) and examined the effect of miR-17-5p in OFs on embryonic development to the blastocyst stage. Small RNA-seq of extracellular vesicles of OFs revealed 242 miRNAs. Additionally, analyzing expressions of randomly selected OF-miRNAs with RT-qPCR in the culture medium of oviductal epithelial cells indicated that the abundance of miRNAs in OFs increased during the luteal phase. miR-17-5p mimic-treated eight-cell-stage zona pellucida-free embryos showed improved embryonic development to the blastocyst stage. The effect of the miR-17-5p mimic was confirmed using a dual-luciferase assay and immunostaining. In addition, RNA-seq of the miR-17-5p mimic- or control-treated embryos revealed differentially expressed genes (DEGs), suggesting possible pathways that overlapped with the in silico-predicted pathways for miR-17-5p targeting genes. Furthermore, ingenuity pathway analysis of DEG predicted miR-17 to be a significant upstream regulator. Our results suggest that miR-17-5p in OFs regulates embryonic development in bovines.
Collapse
Affiliation(s)
- Sogo Aoki
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Yuki Inoue
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
14
|
Xiang D, Jia B, Zhang B, Liang J, Hong Q, Wei H, Wu G. Astaxanthin Supplementation Improves the Subsequent Developmental Competence of Vitrified Porcine Zygotes. Front Vet Sci 2022; 9:871289. [PMID: 35433903 PMCID: PMC9011099 DOI: 10.3389/fvets.2022.871289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopreservation of embryos has been confirmed to cause oxidative stress as a factor responsible for impaired developmental competence. Currently, astaxanthin (Ax) raises considerable interest as a strong exogenous antioxidant and for its potential in reproductive biology. The present study aimed to investigate the beneficial effects of Ax supplementation during in vitro culture of vitrified porcine zygotes and the possible underlying mechanisms. First, the parthenogenetic zygotes were submitted to vitrification and then cultured in the medium added with various concentrations of Ax (0, 0.5, 1.5, and 2.5 μM). Supplementation of 1.5 μM Ax achieved the highest blastocyst yield and was considered as the optimal concentration. This concentration also improved the blastocyst formation rate of vitrified cloned zygotes. Moreover, the vitrified parthenogenetic zygotes cultured with Ax exhibited significantly increased mRNA expression of CDX2, SOD2, and GPX4 in their blastocysts. We further analyzed oxidative stress, mitochondrial and lysosomal function in the 4-cell embryos and blastocysts derived from parthenogenetic zygotes. For the 4-cell embryos, vitrification disturbed the levels of reactive oxygen species (ROS) and glutathione (GSH), and the activities of mitochondria, lysosome and cathepsin B, and Ax supplementation could fully or partially rescue these values. The blastocysts obtained from vitrified zygotes showed significantly reduced ATP content and elevated cathepsin B activity, which also was recovered by Ax supplementation. There were no significant differences in other parameters mentioned above for the resultant blastocysts. Furthermore, the addition of Ax significantly enhanced mitochondrial activity and reduced lysosomal activity in resultant blastocysts. In conclusion, these findings revealed that Ax supplementation during the culture period improved subsequent embryonic development and quality of porcine zygotes after vitrification and might be used to ameliorate the recovery culture condition for vitrified embryos.
Collapse
Affiliation(s)
- Decai Xiang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Baoyu Jia
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Bin Zhang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jiachong Liang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Hongjiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guoquan Wu
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guoquan Wu
| |
Collapse
|
15
|
Effects of Mito-TEMPO on the survival of vitrified bovine blastocysts in vitro. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Antioxidant supplementation of mouse embryo culture or vitrification media support more in-vivo-like gene expression post-transfer. Reprod Biomed Online 2021; 44:393-410. [DOI: 10.1016/j.rbmo.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022]
|
17
|
Iwata H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod Med Biol 2021; 20:419-426. [PMID: 34646069 PMCID: PMC8499604 DOI: 10.1002/rmb2.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondria play a crucial role in nuclear maturation, fertilization, and subsequent embryo development. Cryopreservation is an important assisted reproductive technology that is used worldwide for humans and domestic animals. Although mitochondrial quantity and quality are decisive factors for successful development of oocytes and embryos, cryopreservation induces mitochondrial dysfunction. Upon thawing, the damaged mitochondria are removed, and de novo synthesis occurs to restore the function of mitochondria. Resveratrol, 3,5,4'-trihydroxystilbene, is a polyphenolic antioxidant that has versatile target proteins, among which sirtuin-1 (SIRT1) is a key regulator of in mitochondrial biogenesis and degradation. METHODS The present study is a literature review focusing on experiments involving the hypothesis that the activation of mitochondrial biogenesis and degradation following cryopreservation and warming by resveratrol may help mitochondrial recovery and improve oocyte and embryo development. MAIN FINDINGS AND CONCLUSION Resveratrol improves oocyte maturation and development and upregulates mitochondrial biogenesis and degradation. When vitrified-warmed embryos are treated with resveratrol, it helps in mitochondrial regulation and recovery of embryos from cryopreservation-induced damage. CONCLUSION Resveratrol treatment is a possible countermeasure against cryopreservation-induced mitochondrial damage.
Collapse
|
18
|
Costa FDC, Vasconcelos EM, Nunes Azevedo VA, Feitosa Melo Paulino LR, Soares MD, Viana Silva JR, Barbalho Silva AW, Paz Souza AL. Aloe vera increases mRNA expression of antioxidant enzymes in cryopreserved bovine ovarian tissue and promotes follicular growth and survival after in vitro culture. Cryobiology 2021; 102:104-113. [PMID: 34270982 DOI: 10.1016/j.cryobiol.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 11/25/2022]
Abstract
The aims of the present study were to evaluate the effects of Aloe vera extract on expression of mRNA for antioxidant enzymes in bovine ovarian tissue after vitrification, as well as on follicular morphology, viability, activation and extracellular matrix in cultured ovarian tissues that had been previously vitrified. Fragments from bovine ovarian cortical tissue were cryopreserved in a vitrification solution alone or supplemented with two concentrations of Aloe vera (10 or 50%). After thawing, the cryopreserved tissues were analyzed by histological techniques, as well as the levels of mRNA for SOD, CAT, PRDX6 and GPX1 were investigated. Furthermore, cryopreserved fragments were then culture in vitro in α-MEM for 6 days. Histological evaluation of cultured tissues was performed to determine the percentages of normal and developing follicles. The results showed that, after vitrification, the presence of Aloe vera in both concentrations was able to maintain percentages of collagen fibers similar to fresh tissues (P < 0.05). Aloe vera in both concentrations significantly increased mRNA levels for PRDX6 and GPX1 in cryopreserved tissues, while 10% Aloe vera increased mRNA levels for SOD (P < 0.05). In parallel, after in vitro culture, fragments vitrified in the presence of 10% Aloe vera had significantly higher levels of morphologically healthy follicles when compared to tissue that were vitrified without Aloe vera. In fragments vitrified with Aloe vera, the rate of developing follicles was significantly higher than in tissues vitrified without Aloe vera. Tissues vitrified with 10% Aloe vera and cultured in vitro maintained percentages of collagen fibers similar to fresh tissues. In conclusion, 10% Aloe vera increases the expression of mRNA for PRDX6, GPX1 and SOD in vitrified ovarian tissues, maintains follicular survival and promotes activation and development of follicles after in vitro culture of vitrified bovine ovarian tissue.
Collapse
Affiliation(s)
- Francisco das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - Erlândia Márcia Vasconcelos
- Graduate Program in Science and Biotechnology. Institute of Biology. Fluminense Federal University, Niterói, RJ, Brazil
| | - Venância Antônia Nunes Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | | | - Mônica Dias Soares
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - Anderson Weiny Barbalho Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil
| | - Ana Liza Paz Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, Ceará, Brazil.
| |
Collapse
|
19
|
Sugimoto A, Inoue Y, Tanaka K, Sinozawa A, Shirasuna K, Iwata H. Effects of a gel culture system made of polysaccharides (xanthan gum and locust bean gum) on in vitro bovine oocyte development and gene expression of the granulosa cells. Mol Reprod Dev 2021; 88:516-524. [PMID: 34096128 DOI: 10.1002/mrd.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 11/10/2022]
Abstract
Xanthan gum (XG) and locust bean gum (LBG) are nontoxic polysaccharides that produce culture substrates. The present study examined the effect of XG-LBG gel on in vitro bovine oocyte growth and gene expression in granulosa cells. Oocytes and granulosa cell complexes (OGCs) were cultured in vitro on plastic culture plate (Plate) or XG-LBG gel for 16 days. OGCs formed a dome-like cavity surrounding the oocytes on plate but formed a spherical follicle structure on XG-LBG gel. The total granulosa cell numbers of the OGCs and their survival rate was greater for OGCs cultured on XG-LBG gel than for those cultured on plate. Oocytes grown on XG-LBG gels had higher lipid and mitochondrial content, as well as a larger diameter, than their plate counterparts. When oocytes grown in vitro were subjected to in vitro maturation and fertilization, the normal fertilization rate was significantly higher for oocytes developed on XG-LBG gel than that of oocytes cultured on the plate counterpart. RNAseq of the granulosa cells revealed that genes associated with focal adhesion, phosphatidylinositol 3'-kinase-Akt and Hippo signaling, and regulation of actin cytoskeleton were upregulated in granulosa cells of OGCs cultured on XG-LBG gel compared with those cultured on plate.
Collapse
Affiliation(s)
| | - Yuki Inoue
- Tokyo University of Agriculture, Kanagawa, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihisa Sinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Aoki S, Ito J, Hara S, Shirasuna K, Iwata H. Effect of maternal aging and vitrification on mitochondrial DNA copy number in embryos and spent culture medium. Reprod Biol 2021; 21:100506. [PMID: 33906097 DOI: 10.1016/j.repbio.2021.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Maternal aging and vitrification affect mitochondrial quality and quantity in embryos. The present study investigated the effects of maternal aging on mitochondrial DNA (mtDNA) copy number in embryos, and the amount of cell-free mtDNA (cf-mtDNA) in spent culture medium (SCM) of embryos. Moreover, we examined the effects of vitrification on mtDNA copy number in embryos of young and aged cows, and on cf-mtDNA abundance in SCM. Oocytes collected from ovaries of young (20-40 months old) and aged cows (> 140 months old) were used to produce early stage embryos (8-12 cell-stage, 48 h after insemination). These embryos were individually cultured for 5 days, and mtDNA copy number in blastocysts and cf-mtDNA content in SCM, were evaluated by real-time PCR. At 48 h post-insemination, mtDNA copy number in embryos was greater for young cows compared with that of aged cows, whereas no significant difference was observed in cf-mtDNA in the SCM. Next, we addressed whether zona pellucida (ZP) may mask the difference in cf-mtDNA content in SCM. Using ZP-free embryos, we found significantly greater cf-mtDNA content in the SCM of blastocysts derived from aged cows. Furthermore, when embryos were vitrified and warmed, mtDNA copy number in blastocysts derived from young cows was lower, whereas cf-mtDNA content in SCM was greater than in those derived from aged cows. In conclusion, maternal aging affects mitochondrial kinetics and copy number in embryos following vitrification.
Collapse
Affiliation(s)
- Sogo Aoki
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
21
|
Kageyama M, Ito J, Shirasuna K, Kuwayama T, Iwata H. Mitochondrial reactive oxygen species regulate mitochondrial biogenesis in porcine embryos. J Reprod Dev 2021; 67:141-147. [PMID: 33612552 PMCID: PMC8075724 DOI: 10.1262/jrd.2020-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The number of mitochondria in blastocysts is a potential marker of embryo quality. However, the molecular mechanisms governing the mitochondrial number in
embryos are unclear. This study was conducted to investigate the effect of reduced mitochondrial reactive oxygen species (ROS) levels on mitochondrial
biogenesis in porcine embryos. Oocytes were collected from gilt ovaries and activated to generate over 4 cell-stage embryos at day 2 after activation. These
embryos were cultured in media containing either 0.1 μM MitoTEMPOL (MitoT), 0.5 μM Mitoquinol (MitoQ), or vehicle (ethanol) for 5 days to determine the rate of
development to the blastocyst stage. The mitochondrial number in blastocysts was evaluated by real-time polymerase chain reaction (PCR). Five days after
activation, the embryos (early morula stage) were subjected to immunostaining to determine the expression levels of NRF2 in the nucleus. In addition, the
expression levels of PGC1α and TFAM in the embryos were examined by reverse transcription PCR. One day of incubation with the
antioxidants reduced the ROS content in the embryos but did not affect the rate of development to the blastocyst stage. Blastocysts developed in medium
containing MitoT had lower mitochondrial DNA copy numbers and ATP content, whereas MitoQ showed similar but insignificantly trends. Treatment of embryos with
either MitoT or MitoQ decreased the expression levels of NRF2 in the nucleus and levels of PGC1α and TFAM. These findings
indicate that reductions in mitochondrial ROS levels are associated with low mitochondrial biogenesis in embryos.
Collapse
Affiliation(s)
- Mio Kageyama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
22
|
Abstract
In vitro culture of the embryo is a useful method to treat infertility that shows embryo potential for selecting the best one to transfer and successfully implantation. However, embryo development in vitro is affected by oxidative stresses such as reactive oxygen species that may damage embryo development. Antioxidants are molecules found in fruits, vegetables, and fish that play an important role in reducing oxidative processes. In the natural environment, there is a physiological antioxidant system that protects embryos against oxidative damage. This antioxidant system does not exist in vitro. Antioxidants act as free radical scavengers and protect cells or repair damage done by free radicals. Various studies have shown that adding antioxidants into embryo culture medium improves embryo development in vitro. This review article emphasizes different aspects of various antioxidants, including types, functions and mechanisms, on the growth improvement of different species of embryos in vitro.
Collapse
|
23
|
Kobayashi M, Ito J, Shirasuna K, Kuwayama T, Iwata H. Comparative analysis of cell-free DNA content in culture medium and mitochondrial DNA copy number in porcine parthenogenetically activated embryos. J Reprod Dev 2020; 66:539-546. [PMID: 32908082 PMCID: PMC7768170 DOI: 10.1262/jrd.2020-097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined the effect of ploidy on mitochondrial DNA (mtDNA) copy number in embryos and the amount of cell-free mitochondrial and nucleic DNA content (cf-mtDNA and cf-nDNA) in spent culture medium (SCM). Oocytes collected from the ovaries were matured, activated, incubated in medium containing cycloheximide (CHX) or CHX and cytochalasin B (CB) for 4.5 h to produce haploid or diploid embryos (H-group and D-group embryos). These embryos were cultured for 7 days, and the blastocysts and SCM were examined. The amount of mtDNA and nDNA was determined by real-time PCR. The rate of development to the blastocyst stage was higher for the D-group than for the H-group. Moreover, D-group blastocysts had less mtDNA compared to the H-group blastocysts. After activation, the mitochondrial content was constant before the blastocyst stage in D-group embryos, but increased earlier in H-group embryos. The amount of cf-mtDNA in the SCM of D-group blastocysts was greater than that of H-group blastocysts. However, when the cf-mtDNA in the SCM of 2 cell-stage embryos (day 2 post-activation) was examined, the amount of cf-mtDNA was greater in the H-group than in the D-group embryos. When D-group embryos were cultured for 7 days, a significant correlation was observed between the total cell number of blastocysts and cf-nDNA content in the SCM. Hence, although careful consideration is needed regarding the time point for evaluating mtDNA content in the embryos and SCM, this study demonstrates that mtDNA in the embryos and SCM was affected by the ploidy of the embryos.
Collapse
Affiliation(s)
- Mitsuru Kobayashi
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
24
|
Kobayashi M, Kobayashi J, Shirasuna K, Iwata H. Abundance of cell-free mitochondrial DNA in spent culture medium associated with morphokinetics and blastocyst collapse of expanded blastocysts. Reprod Med Biol 2020; 19:404-414. [PMID: 33071643 PMCID: PMC7542021 DOI: 10.1002/rmb2.12344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 01/28/2023] Open
Abstract
Purpose This retrospective observational study investigated relationships between the abundance of cell‐free mitochondrial DNA (cf‐mtDNA) in spent culture medium (SCM) of human‐expanded blastocysts and their morphokinetics to address the question of whether the abundance of cf‐mtDNA in SCM could predict the quality of blastocysts. Methods Embryos (n = 53) were individually cultured in a time‐lapse incubator until they reached the expanded blastocyst stage (5 or 6 days), following which copy numbers of cf‐mtDNA in SCM (20 μL) of expanded blastocysts were determined using real‐time PCR. Results The duration between start of blastulation to expanded blastocyst (tEB–tSB) and between that of the blastocyst stage to expanded blastocyst (tEB–tB) significantly and positively correlated with the abundance of cf‐mtDNA in the SCM (tEB–tSB: r = .46; P < .01; tEB–tB: r = .47; P < .01). The abundance of cf‐mtDNA in the SCM was significantly greater in blastocysts with blastocyst collapse (BC), than without BC, and significantly and positively correlated with the number of BC. Conclusions The abundance of cf‐mtDNA in the SCM was associated with expansion duration and BC. Thus, cf‐mtDNA abundance in the SCM serves as a marker to predict the quality of expanded blastocysts.
Collapse
Affiliation(s)
- Mitsuru Kobayashi
- Department of Animal Science Tokyo University of Agriculture Atsugi Japan.,Kanagawa Ladies Clinic Yokohama Japan
| | | | - Koumei Shirasuna
- Department of Animal Science Tokyo University of Agriculture Atsugi Japan
| | - Hisataka Iwata
- Department of Animal Science Tokyo University of Agriculture Atsugi Japan
| |
Collapse
|
25
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
26
|
Hara S, Aoki S, Nagata M, Shirasuna K, Noguchi T, Iwata H. Xanthan gum and locust bean gum substrate improves bovine embryo development. Reprod Domest Anim 2020; 55:1124-1131. [PMID: 32562321 DOI: 10.1111/rda.13750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
One of the major difference between the in vivo and in vitro embryonic environments is the stiffness of the culture substrate. Xanthan gum (XG) and locust bean gum (LBG) are natural materials that are safe, inexpensive and easy to handle. In this study, we investigated the effects of using a polysaccharide culture substrate made from 1% XG and 1% LBG (XG-LBG gel) on bovine embryonic development. Oocytes collected from bovine ovaries were subjected to maturation, and fertilization to generate embryos at an early developmental stage (>4 cell stage). Cleaved embryos were further cultured in a well of 96-well cell culture plate coated with or without XG-LBG gel for 5 days. While the developmental rate up to the blastocyst stage did not differ between the two culture systems (control, 38.0 vs. gel, 38.6%), blastocysts developed on the XG-LBG gel produced significantly high cell numbers and ATP content. Embryos cultured on XG-LBG gels for 24 hr had high expression levels of F-actin and a highly even distribution of E-cadherin. In addition, embryos developed on XG-LBG gel demonstrated increased translocation of YAP to the nucleus and increased connective tissue growth factor (CTGF) protein levels (downstream of Hippo signalling). These findings suggest that soft culture substrates improve embryonic development by enhancing mechanotransduction, including YAP-CTGF signalling.
Collapse
Affiliation(s)
- Shunsuke Hara
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Sogo Aoki
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Miki Nagata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Tatsuo Noguchi
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
27
|
Huo Y, Qin Q, Zhang L, Kuo Y, Wang H, Yan L, Li R, Zhang X, Yan J, Qiao J. Effects of oocyte vitrification on the behaviors and physiological indexes of aged first filial generation mice. Cryobiology 2020; 95:20-28. [PMID: 32598946 DOI: 10.1016/j.cryobiol.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022]
Abstract
To evaluate the long-term effects of oocyte cryopreservation on the health of the first filial generation (F1), we used B6D2F1 mice for oocyte collection, in vitro fertilization, and breeding. The female F1 mice born from the offspring of fresh mature oocytes (control group) and from the offspring of vitrified oocytes with traditional vitrification medium (VM group) and new improved vitrification medium (2P10E7D group) were maintained until 14-15 months of age for behavioral tests and 16-17 months of age for physiological analyses. Behavioral indexes, including anxiety-like status, discrimination ability, learning and memory ability, were investigated. Physiological indexes including body weight, body fat, heart rate, blood pressure, and blood lipids were also analyzed. In our results, the behavioral indexes, body weight, body fat, heart rate, blood pressure, total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) did not show significant differences among the three groups. However, the triglyceride (TG) level of the VM group was higher than that of the 2P10E7D group. Moreover, compared with the control group, both the VM group and the 2P10E7D group showed greatly increased diastolic blood pressure. This study is the first to report that oocyte vitrification might affect metabolic physiological indexes via transgenerational inheritance rather than behaviors related to anxiety-like status and cognitive ability. Furthermore, different vitrification media might have differential transgenerational effects.
Collapse
Affiliation(s)
- Ying Huo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingyuan Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Lu Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Haiyan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Xiaowei Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; National Clinical Research Center of Obstetrics and Gynecology, Beijing, 100191, China
| |
Collapse
|
28
|
Garcia-Dominguez X, Marco-Jiménez F, Peñaranda DS, Vicente JS. Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals (Basel) 2020; 10:E1043. [PMID: 32560425 PMCID: PMC7341293 DOI: 10.3390/ani10061043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Nowadays, assisted reproductive technologies (ARTs) are considered valuable contributors to our past, but a future without their use is inconceivable. However, in recent years, several studies have evidenced a potential impact of ART on long-term development in mammal species. To date, the long-term follow-up data are still limited. So far, studies have mainly focused on in vitro fertilization or in vitro culture, with information from gametes/embryos cryopreservation field being practically missing. Herein, we report an approach to determine whether a vitrified embryo transfer procedure would have long-term consequences on the offspring. Using the rabbit as a model, we compared animals derived from vitrified-transferred embryos versus those naturally conceived, studying the growth performance, plus the weight throughout life, and the internal organs/tissues phenotype. The healthy status was assessed over the hematological and biochemical parameters in peripheral blood. Additionally, a comparative proteomic analysis was conducted in the liver tissue to investigate molecular cues related to vitrified embryo transfer in an adult tissue. After vitrified embryo transfer, birth weight was increased, and the growth performance was diminished in a sex-specific manner. In addition, vitrified-transferred animals showed significantly lower body, liver and heart weights in adulthood. Molecular analyses revealed that vitrified embryo transfer triggers reprogramming of the liver proteome. Functional analysis of the differentially expressed proteins showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism, which has been reported as possible causes of a disturbed growth pattern. Therefore, we conclude that vitrified embryo transfer is not a neutral procedure, and it incurs long-term effects in the offspring both at phenotypic and molecular levels. These results described a striking example of the developmental plasticity exhibited by the mammalian embryo.
Collapse
Affiliation(s)
| | | | | | - José Salvador Vicente
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (X.G.-D.); (F.M.-J.); (D.S.P.)
| |
Collapse
|
29
|
Ito J, Shirasuna K, Kuwayama T, Iwata H. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology 2020; 93:37-43. [DOI: 10.1016/j.cryobiol.2020.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/24/2022]
|
30
|
Ichikawa K, Shibahara H, Shirasuna K, Kuwayama T, Iwata H. Cell-free DNA content in follicular fluid: A marker for the developmental ability of porcine oocytes. Reprod Med Biol 2020; 19:95-103. [PMID: 31956291 PMCID: PMC6955585 DOI: 10.1002/rmb2.12309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The present study examined the relationships among the amount of cell-free-DNA (cfDNA) in porcine follicular fluid (FF), the developmental ability of enclosed oocytes, and characteristics of granulosa cells and examined the effect of cfDNA content in maturation medium on the developmental ability of the oocytes. METHODS Oocytes and FF were collected from individual gilts, and the gilts were rated based on the ability of their oocytes to develop to the blastocyst stage and the amount of cfDNA in the FF. The copy numbers of mitochondrial DNA (Mt-DNA) and nuclear DNA (N-DNA) were measured by real-time PCR and the DNA sequence. FF or cfDNA was added to the maturation medium, and the developmental ability of the oocytes was examined. RESULTS The amount of cfDNA was associated with apoptosis of the granulosa cells, and high-cfDNA content in FF was associated with low developmental ability of oocytes. Supplementation of the maturation medium with FF containing high cf-Mt-DNA or with DNA extracted from the FF did not affect oocyte developmental competence. CONCLUSIONS Cell-free DNA content in FF is a marker for oocyte competence, but cfDNA in the oocyte maturation environment did not affect oocyte developmental ability.
Collapse
Affiliation(s)
- Kana Ichikawa
- Department of Animal ScienceTokyo University of AgricultureKanagawaJapan
| | - Hidenori Shibahara
- Department of Animal ScienceTokyo University of AgricultureKanagawaJapan
| | - Komei Shirasuna
- Department of Animal ScienceTokyo University of AgricultureKanagawaJapan
| | - Takehito Kuwayama
- Department of Animal ScienceTokyo University of AgricultureKanagawaJapan
| | - Hisataka Iwata
- Department of Animal ScienceTokyo University of AgricultureKanagawaJapan
| |
Collapse
|
31
|
Hayashi T, Kansaku K, Abe T, Ueda S, Iwata H. Effects of resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryopreserved by slow freezing. Anim Sci J 2019; 90:849-856. [PMID: 31067600 DOI: 10.1111/asj.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
Abstract
This study evaluated the effects of cryopreservation by slow freezing on the mitochondrial function, DNA integrity, and developmental ability of bovine embryos and examined whether resveratrol treatment of the frozen-thawed blastocysts improved embryonic viability. In vitro produced bovine embryos were subjected to slow freezing. After thawing, the ATP content and mitochondrial DNA integrity (mtDNA), determined by real-time PCR targeting short and long mitochondrial sequences, was found to be lower in frozen-thawed embryos than in fresh embryos, and mtDNA copy number was significantly reduced during the 24-hr incubation post warming. Furthermore, immunostaining against double-strand DNA revealed DNA damage in frozen-thawed embryos. When frozen-thawed embryos were incubated in the medium containing 0.5 µM resveratrol, SIRT1 expression, and survival rate of the embryos significantly improved compared with the vehicle-treated embryos. In addition, cell-free mtDNA content in medium was higher in case of resveratrol-treated embryos than of vehicle-treated embryos. In conclusion, slow freezing affects mitochondrial integrity and function in the blastocysts. In the frozen-thawed embryos, mitochondria were removed during post-thawing incubation and resveratrol enhanced the process, resulting in improved survivability of the embryos.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Animal production, Fukuoka Agriculture and Forestry Research Center, Chikushino, Fukuoka, Japan
| | - Kazuki Kansaku
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Takahito Abe
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Shuji Ueda
- Department of Animal production, Fukuoka Agriculture and Forestry Research Center, Chikushino, Fukuoka, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|
32
|
Xiang DC, Jia BY, Quan GB, Zhang B, Shao QY, Zhao ZY, Hong QH, Wu GQ. Effect of Knockout Serum Replacement During Postwarming Recovery Culture on the Development and Quality of Vitrified Parthenogenetic Porcine Blastocysts. Biopreserv Biobank 2019; 17:342-351. [PMID: 31009253 DOI: 10.1089/bio.2018.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The postwarming recovery culture, as one of the steps in cryopreservation process, is directly correlated with the survival and quality of embryos. Generally, recovery medium includes undefined serum or serum components that may cause the instability of results and other problems. The objective of this study was to evaluate the effect of knockout serum replacement (KSR) as a substitute for serum during recovery culture on the development and quality of vitrified parthenogenetic porcine blastocysts. Fetal bovine serum (FBS) was used as a positive control. The expanded blastocysts on day 5 were vitrified by the Cryotop method, and recovered with 10% (v/v) KSR or 10% (v/v) FBS for 48 hours after warming. Survival and hatching rates of vitrified blastocysts were significantly increased by KSR or FBS supplementation. The vitrified blastocysts recovered in KSR or FBS exhibited significantly decreased percentages of membrane damage and apoptosis, and increased total cells. Addition of KSR or FBS during recovery culture significantly reduced reactive oxygen species levels, and improved mitochondrial activity and adenosine triphosphates content in the vitrified blastocysts. Vitrification did not affect the gene expression of PCNA, CDX2, and CPT1, but significantly increased mRNA levels of POU5F1 and uPA. KSR added to the recovery medium significantly upregulated mRNA levels of PCNA and CPT1, and downregulated POU5F1 mRNA levels. The expression levels of PCNA, CDX2, CPT1, and uPA in vitrified blastocysts were significantly upregulated by addition of FBS to recovery medium. Moreover, the BAX: BCL2L1 ratio was similar between fresh and vitrified blastocysts, and KSR or FBS supplementation had no effect on the value. In conclusion, our data showed that KSR supplementation during recovery culture can improve the development and quality of vitrified parthenogenetic porcine blastocysts. These findings provide a useful reference that KSR could be used to replace FBS as a defined serum supplement for recovery culture of vitrified blastocysts.
Collapse
Affiliation(s)
- De Cai Xiang
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| | - Bao Yu Jia
- 2College of Veterinary Medicine, Yunnan Agricultural University, Kunming, P.R. China
| | - Guo Bo Quan
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| | - Bin Zhang
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| | - Qing Yong Shao
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| | - Zhi Yong Zhao
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| | - Qiong Hua Hong
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| | - Guo Quan Wu
- 1Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, P.R. China
| |
Collapse
|