1
|
Kakkar V, Saini K, Singh KK. Challenges of current treatment and exploring the future prospects of nanoformulations for treatment of atopic dermatitis. Pharmacol Rep 2023; 75:1066-1095. [PMID: 37668937 PMCID: PMC10539427 DOI: 10.1007/s43440-023-00510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/06/2023]
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by a burning sensation and eczematous lesions in diverse portions of the body. The treatment of AD is exclusively focused to limit the itching, reduce inflammation, and repair the breached barrier of the skin. Several therapeutic agents for the treatment and management of AD have been reported and are in use in clinics. However, the topical treatment of AD has been an unswerving challenge for the medical fraternity owing to the impaired skin barrier function in this chronic skin condition. To surmount the problems of conventional drug delivery systems, numerous nanotechnology-based formulations are emerging as alternative new modalities for AD. Latter enhances the bioavailability and delivery to the target disease site, improves drug permeation and therapeutic efficacy with reduced systemic and off-target side effects, and thus improves patient health and promotes compliance. This review aims to describe the various pathophysiological events involved in the occurrence of AD, current challenges in treatment, evidence of molecular markers of AD and its management, combinatorial treatment options, and the intervention of nanotechnology-based formulations for AD therapeutics.
Collapse
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Translational Biosciences and Behaviour, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
| |
Collapse
|
2
|
Joushomme A, Orlacchio R, Patrignoni L, Canovi A, Chappe YL, Poulletier De Gannes F, Hurtier A, Garenne A, Lagroye I, Moisan F, Cario M, Lévêque P, Arnaud-Cormos D, Percherancier Y. Effects of 5G-modulated 3.5 GHz radiofrequency field exposures on HSF1, RAS, ERK, and PML activation in live fibroblasts and keratinocytes cells. Sci Rep 2023; 13:8305. [PMID: 37221363 DOI: 10.1038/s41598-023-35397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Rosa Orlacchio
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Lorenza Patrignoni
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Anne Canovi
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Yann Loïck Chappe
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | | | - Annabelle Hurtier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Isabelle Lagroye
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - François Moisan
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Muriel Cario
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Philippe Lévêque
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Delia Arnaud-Cormos
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Yann Percherancier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France.
| |
Collapse
|
3
|
Effect of New Surfactants on Biological Properties of Liquid Soaps. Molecules 2022; 27:molecules27175425. [PMID: 36080193 PMCID: PMC9458098 DOI: 10.3390/molecules27175425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liquid soaps are the basic cosmetics used to clean the skin of the hands. Frequent hand washing prevents viral contamination but may damage the skin’s hydro-lipid layer, leading to various types of irritation. Therefore, four liquid soap formulas were developed with three amphoteric surfactants: Cocamidopropyl Betaine (LS II), CocamidopropylHydroxysultaine (LS III), and newly synthesized Evening PrimroseaamidopropylSulfobetaine (LS IV). We evaluated the skin irritating potential (zein number, bovine albumin test) and cytotoxicity (AlamarBlue™, Cell viability, and Cell cycle assays) on HaCaT cell line. We observed lower values of the zein number and bovine albumin tests after adding soaps with surfactants (the highest differences in LS IV) compared to the base soap (LS I). However, LS I and LS II did not differ in cytotoxic assays. Therefore, adding LS III and LS IV seems potentially more dangerous to the cells. However, it should be noted that cells were continuously exposed to liquid soaps for more than 24 h, so its cytotoxic effects after dermal use in humans may be unnoticeable. Concluding, results suggest that the newly synthesized LS IV should improve the safety of liquid hand washing soaps.
Collapse
|
4
|
Lu Z, Xiao S, Chen W, Zhu R, Yang H, Steinhoff M, Li Y, Cheng W, Yan X, Li L, Xue S, Larkin C, Zhang W, Fan Q, Wang R, Wang J, Meng J. IL-20 promotes cutaneous inflammation and peripheral itch sensation in atopic dermatitis. FASEB J 2022; 36:e22334. [PMID: 35486004 PMCID: PMC9321592 DOI: 10.1096/fj.202101800r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/11/2022]
Abstract
Atopic dermatitis (AD) is a chronic skin disease, which is associated with intense itch, skin barrier dysfunction and eczematous lesions. Aberrant IL‐20 expression has been implicated in numerous inflammatory diseases, including psoriasis. However, the role of IL‐20 in AD remains unknown. Here, RNA‐seq, Q‐PCR, and immunocytochemistry were utilized to examine disease‐driven changes of IL‐20 and its cognate receptor subunits in skin from healthy human subjects, AD patients and murine AD‐models. Calcium imaging, knockdown and cytokine array were used to investigate IL‐20‐evoked responses in keratinocytes and sensory neurons. The murine cheek model and behavioral scoring were employed to evaluate IL‐20‐elicited sensations in vivo. We found that transcripts and protein of IL‐20 were upregulated in skin from human AD and murine AD‐like models. Topical MC903 treatment in mice ear enhanced IL‐20R1 expression in the trigeminal sensory ganglia, suggesting a lesion‐associated and epidermal‐driven mechanism for sensitization of sensory IL‐20 signaling. IL‐20 triggered calcium influx in both keratinocytes and sensory neurons, and promoted their AD‐related molecule release and transcription of itch‐related genes. In sensory neurons, IL‐20 application increased TLR2 transcripts, implicating a link between innate immune response and IL‐20. In a murine cheek model of acute itch, intradermal injection IL‐20 and IL‐13 elicited significant itch‐like behavior, though only when co‐injected. Our findings provide novel insights into IL‐20 function in peripheral (skin‐derived) itch and clinically relevant intercellular neuron‐epidermal communication, highlighting a role of IL‐20 signaling in the pathophysiology of AD, thus forming a new basis for the development of a novel antipruritic strategy via interrupting IL‐20 epidermal pathways.
Collapse
Affiliation(s)
- Zhiping Lu
- School of Life Sciences, Henan University, China
| | - Song Xiao
- School of Life Sciences, Henan University, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, China
| | - Renkai Zhu
- School of Life Sciences, Henan University, China
| | - Hua Yang
- School of Life Sciences, Henan University, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Yanqing Li
- School of Life Sciences, Henan University, China
| | - Wenke Cheng
- School of Life Sciences, Henan University, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, China
| | - Lianlian Li
- School of Life Sciences, Henan University, China
| | - Shanghai Xue
- School of Life Sciences, Henan University, China
| | - Ciara Larkin
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Wenhao Zhang
- School of Life Sciences, Henan University, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, China
| | - Ruizhen Wang
- School of Life Sciences, Henan University, China
| | - Jiafu Wang
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jianghui Meng
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
5
|
Effects of 445 nm, 520 nm, and 638 nm Laser Irradiation on the Dermal Cells. Int J Mol Sci 2021; 22:ijms222111605. [PMID: 34769035 PMCID: PMC8584201 DOI: 10.3390/ijms222111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background: The invention of non-ionizing emission devices revolutionized science, medicine, industry, and the military. Currently, different laser systems are commonly used, generating the potential threat of excessive radiation exposure, which can lead to adverse health effects. Skin is the organ most exposed to laser irradiation; therefore, this study aims to evaluate the effects of 445 nm, 520 nm, and 638 nm non-ionizing irradiation on keratinocytes and fibroblasts. Methods: Keratinocytes and fibroblasts were exposed to a different fluency of 445 nm, 520 nm, and 638 nm laser irradiation. In addition, viability, type of cell death, cell cycle distribution, and proliferation rates were investigated. Results: The 445 nm irradiation was cytotoxic to BJ-5ta (≥58.7 J/cm2) but not to Ker-CT cells. Exposure influenced the cell cycle distribution of Ker-CT (≥61.2 J/cm2) and BJ-5ta (≥27.6 J/cm2) cells, as well as the Bj-5ta proliferation rate (≥50.5 J/cm2). The 520 nm irradiation was cytotoxic to BJ-5ta (≥468.4 J/cm2) and Ker-CT (≥385.7 J/cm2) cells. Cell cycle distribution (≥27.6 J/cm2) of Ker-CT cells was also affected. The 638 nm irradiation was cytotoxic to BJ-5ta and Ker-CT cells (≥151.5 J/cm2). The proliferation rate and cell cycle distribution of BJ-5ta (≥192.9 J/cm2) and Ker-CT (13.8 and 41.3 J/cm2) cells were also affected. Conclusions: At high fluences, 455 nm, 520 nm, and 638 nm irradiation, representing blue, green, and red light spectra, are hazardous to keratinocytes and fibroblasts. However, laser irradiation may benefit the cells at low fluences by modulating the cell cycle and proliferation rate.
Collapse
|
6
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Salinas E. The Keratinocyte as a Crucial Cell in the Predisposition, Onset, Progression, Therapy and Study of the Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms221910661. [PMID: 34639001 PMCID: PMC8509070 DOI: 10.3390/ijms221910661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The keratinocyte (KC) is the main functional and structural component of the epidermis, the most external layer of the skin that is highly specialized in defense against external agents, prevention of leakage of body fluids and retention of internal water within the cells. Altered epidermal barrier and aberrant KC differentiation are involved in the pathophysiology of several skin diseases, such as atopic dermatitis (AD). AD is a chronic inflammatory disease characterized by cutaneous and systemic immune dysregulation and skin microbiota dysbiosis. Nevertheless, the pathological mechanisms of this complex disease remain largely unknown. In this review, we summarize current knowledge about the participation of the KC in different aspects of the AD. We provide an overview of the genetic predisposing and environmental factors, inflammatory molecules and signaling pathways of the KC that participate in the physiopathology of the AD. We also analyze the link among the KC, the microbiota and the inflammatory response underlying acute and chronic skin AD lesions.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- National Council of Science and Technology, Ciudad de México 03940, Mexico
| | - Eva Salinas
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- Correspondence: ; Tel.: +52-449-9108424
| |
Collapse
|
7
|
Addison R, Weatherhead SC, Pawitri A, Smith GR, Rider A, Grantham HJ, Cockell SJ, Reynolds NJ. Therapeutic wavelengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical pathways in psoriatic epidermis. Redox Biol 2021; 41:101924. [PMID: 33812333 PMCID: PMC8050411 DOI: 10.1016/j.redox.2021.101924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet B radiation (UVB) exerts pleiotropic effects on human skin. DNA damage response and repair pathways are activated by UVB; if damage cannot be repaired, apoptosis ensues. Although cumulative UVB exposure predisposes to skin cancer, UVB phototherapy is widely used as an effective treatment for psoriasis. Previous studies defined the therapeutic action spectrum of UVB and showed that psoriasis is resistant to apoptosis. This study aimed to investigate early molecular responses within psoriasis plaques following irradiation with single equi-erythemogenic doses of clinically-effective (311 nm, narrow-band) compared to clinically-ineffective (290 nm) UVB. Forty-eight micro-dissected epidermal samples from 20 psoriatic patients were analyzed using microarrays. Our bioinformatic analysis compared gene expression between 311 nm irradiated, 290 nm irradiated and control psoriasis epidermis to specifically identify 311 nm UVB differentially expressed genes (DEGs) and their upstream regulatory pathways. Key DEGs and pathways were validated by immunohistochemical analysis. There was a dynamic induction and repression of 311 nm UVB DEGs between 6 h and 18 h, only a limited number of DEGs maintained their designated expression status between time-points. Key disease and function pathways included apoptosis, cell death, cell migration and leucocyte chemotaxis. DNA damage response pathways, NRF2-mediated oxidative stress response and P53 signalling were key nodes, interconnecting apoptosis and cell cycle arrest. Interferon signalling, dendritic cell maturation, granulocyte adhesion and atherosclerotic pathways were also differentially regulated. Consistent with these findings, top transcriptional regulators of 311 nm UVB DEGs related to: a) apoptosis, DNA damage response and cell cycle control; b) innate/acquired immune regulation and inflammation; c) hypoxia/redox response and angiogenesis; d) circadian rhythmicity; f) EGR/AP1 signalling and keratinocyte differentiation; and g) mitochondrial biogenesis. This research provides important insights into the molecular targets of 311 nm UVB, underscoring key roles for apoptosis and cell death. These and the other key pathways delineated may be central to the therapeutic effects of 311 nm in psoriasis.
Collapse
Affiliation(s)
- Rachel Addison
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie C Weatherhead
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Anandika Pawitri
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Ashley Rider
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Henry J Grantham
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Nick J Reynolds
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
8
|
Lin JC, Chen ZH, Chen XD, Wang SB. Circulating sFasL Levels Predict the Severity and Outcome of Burn Injury: A Prospective Observational Study. J Surg Res 2021; 265:1-10. [PMID: 33862353 DOI: 10.1016/j.jss.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Severe burn injury activates shock, inflammation, and blood cell system, but inappropriate reactions may lead to adverse outcomes. Soluble Fas ligand (sFasL) participates in apoptosis and inflammatory response. The circulating sFasL levels we investigated in association with the burn severity, shock, inflammation, blood cells, and mortality in patients with severe burns. METHODS A total of 56 patients with severe burns were recruited. The levels of sFasL and the biomarkers reflecting shock, organ damage, inflammation, and blood cells at 48 h postburn were analyzed. We compared the practical situation of patients that stratified by median sFasL levels and investigated the predictive value of sFasL for mortality. RESULTS High circulating sFasL levels were associated with the higher degrees of burn index, shock index, lactate, N-terminal probrain natriuretic peptide, total bilirubin, blood urea nitrogen, creatinine, tumor necrosis factor-α, interleukin-1β, interleukin-8, intercellular adhesion molecule 1, and complement 3, and the lower degrees of oxygenation index, lymphocytes, and platelets. Multiple linear regression analysis showed that the higher tumor necrosis factor-α (P < 0.001) and the lower oxygenation index (P = 0.031) and lymphocytes (P = 0.043) were associated with the higher sFasL. High sFasL (a unit is 50 ng/L) (odds ratio [OR] 5.50 [95% CI 1.04-29.20], P = 0.045) was an independent predictor of increased mortality by multivariate logistic regression analysis. CONCLUSIONS High circulating sFasL at 48 h postburn in patients with severe burns reflect shock, proinflammatory response, organ damage, and lymphocyte reductions and predict 30-day mortality.
Collapse
Affiliation(s)
- Jian-Chang Lin
- Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Burn Institute, Fujian Burn Medical Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhao-Hong Chen
- Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Burn Institute, Fujian Burn Medical Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiao-Dong Chen
- Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Burn Institute, Fujian Burn Medical Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shun-Bin Wang
- Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Burn Institute, Fujian Burn Medical Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice. J Ginseng Res 2020; 45:176-182. [PMID: 33437169 PMCID: PMC7790890 DOI: 10.1016/j.jgr.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Atopic dermatitis (AD) is associated with chronic skin inflammatory reactions. p-coumaric acid (pCA) is an active ingredient of Panax ginseng Meyer (Araliaceae). Methods Here, we estimated an anti-AD effect of pCA on activated mast cells, activated splenocytes, and a mouse model of AD. Cytokines levels were measured by ELISA and protein activation was analyzed by Western blotting. 2,4-dinitrofluorobenzene (DNFB) was used to induce AD-like skin lesions. Results The treatment with pCA suppressed the productions and mRNA expressions of thymic stromal lymphopoietin (TSLP), TNF-ɑ, IL-6, and IL-1β in HMC-1 cells. pCA downregulated the expressions of RIP2 and caspase-1, phosphorylated-(p)p38/pJNK/pERK, and pIKKβ/pIkBɑ/NF-κB in HMC-1 cells. pCA also decreased the productions of TSLP, TNF-ɑ, IL-6, IL-4, and IFN-γ in the supernatant of stimulated splenic cells. Comparing to DNFB-sensitized control group, pCA-treated group alleviated pathological changes of AD-like lesions. pCA decreased the proteins and mRNA expressions levels of TSLP, IL-6, and IL-4 in the skin lesions. Caspase-1 activation was also downregulated by pCA treatment in the AD-like lesions. The serum levels of histamine, IgE, TSLP, TNF-ɑ, IL-6, and IL-4 were suppressed following treatment with pCA. Conclusion This study suggests that pCA has the potential to improve AD by suppressing TSLP as well as inflammatory cytokines via blocking of caspase-1/NF-κB signal cascade.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Soo Lee
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Division of Food and Pharmaceutical Engineering, BioChip Research Center, Hoseo University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
10
|
Poque E, Arnaud-Cormos D, Patrignoni L, Ruigrok HJ, Poulletier De Gannes F, Hurtier A, Renom R, Garenne A, Lagroye I, Lévêque P, Percherancier Y. Effects of radiofrequency fields on RAS and ERK kinases activity in live cells using the bioluminescence resonance energy transfer technique. Int J Radiat Biol 2020; 96:836-843. [PMID: 32052678 DOI: 10.1080/09553002.2020.1730016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose: The present study was conducted to re-evaluate the effect of low-level 1800 MHz RF signals on RAS/MAPK activation in live cells.Material and methods: Using Bioluminescence Resonance Energy Transfer technique (BRET), we assessed the effect of Continuous wave (CW) and Global System for Mobile (GSM)-modulated 1800 MHz signals (up to 2 W/kg) on ERK and RAS kinases' activity in live HuH7 cells.Results: We found that radiofrequency field (RF) exposure for 24 h altered neither basal level of RAS and ERK activation nor the potency of phorbol-12-myristate-13-acetate (PMA) to activate RAS and ERK kinases. However, we found that exposure to GSM-modulated 1800 MHz signals at 2 W/kg decreased the PMA maximal efficacy to activate both RAS and ERK kinases' activity. Exposure with CW 1800 MHz signal at 2 W/kg only decreased maximal efficacy of PMA to activate ERK but not RAS. No effects of RF exposure at 0.5 W/kg was observed on maximal efficacy of PMA to activate either RAS or ERK whatever the signal used.Conclusions: Our results indicate that RF exposure decreases the efficiency of the cascade of events, which, from the binding of PMA to its receptor(s), leads to the activation of RAS and ERK kinases.
Collapse
Affiliation(s)
- Emmanuelle Poque
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | | | | | | | | | - Annabelle Hurtier
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | - Rémy Renom
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, Institute of Neurodegenerative Diseases, UMR 5293, Talence, France
| | - Isabelle Lagroye
- IMS Laboratory, CNRS, UMR 5218, Université de Bordeaux, Talence, France.,Paris Sciences et Lettres Research University, EPHE, Paris, France
| | | | | |
Collapse
|
11
|
Szymański Ł, Sobiczewska E, Cios A, Szymanski P, Ciepielak M, Stankiewicz W. Immunotropic effects in cultured human blood mononuclear cells exposed to a 900 MHz pulse-modulated microwave field. JOURNAL OF RADIATION RESEARCH 2020; 61:27-33. [PMID: 31832654 PMCID: PMC6976861 DOI: 10.1093/jrr/rrz085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
The specific biological effect of electromagnetic field (EMF) remains unknown even though devices present in our daily lives, such as smartphones and Wi-Fi antennae increase the environmental level of electromagnetic radiation. It is said that the human immune system is able to react to discrete environmental stimuli like EMF. To investigate the effect of 900 MHz microwave stimulation on the immune system our research aimed to analyze lymphocyte proliferation and observe and assess the basic immunoregulatory activities using a newly developed and improved anechoic chamber. Samples of mononuclear cells (PBMC) isolated from the blood of healthy donors were exposed to 900 MHz pulse-modulated radiofrequency radiation (20 V/m, SAR 0.024 W/kg) twice (15 min each) or left without irradiation (control group). Subsequently, the control and exposed cells were set up to determine several parameters characterizing T cell immunocompetence and monocyte immunogenic activity. Although the microcultures of PBMC exposed to radiofrequency radiation demonstrated higher immunogenic activity of monocytes (LM index) and T-cell response to concanavalin A than control cultures after first exposure, this parameter decreased after a second stimulation. Saturation of the interleukin-2 (IL-2) receptor rose significantly after the second day of exposure. On the other hand, response to mitogen dropped after EMF stimulation. The results suggest that PBMC are able to overcome stress caused by mitogens after stimulation with 900 MHz radiation.
Collapse
Affiliation(s)
- Łukasz Szymański
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Elżbieta Sobiczewska
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Aleksandra Cios
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Corresponding Author: Zakład Ochrony Mikrofalowej WIHE, Budynek Izotopów, Szaserów 128, Warsaw, Poland. Tel: 22261817103;
| | - Pawel Szymanski
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Martyna Ciepielak
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Wanda Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| |
Collapse
|
12
|
Liu Q, Wang H, Wang X, Lu M, Tan X, Peng L, Tan F, Xiao T, Xiao S, Xia Y. Experimental atopic dermatitis is dependent on the TWEAK/Fn14 signaling pathway. Clin Exp Immunol 2020; 199:56-67. [PMID: 31515807 PMCID: PMC6904660 DOI: 10.1111/cei.13373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) acts through its receptor fibroblast growth factor inducible 14 (Fn14), and participates in skin inflammation. Both TWEAK and Fn14 are highly expressed in skin lesions of patients with atopic dermatitis. The purpose of this study was to further explore the effect of Fn14 inhibition on experimental atopic dermatitis. Experimental atopic dermatitis was induced in the wild-type and Fn14 knock-out BALB/c mice. The effect of TWEAK/Fn14 interaction on keratinocytes was studied in an in-vitro model of atopic dermatitis. Fn14 deficiency ameliorates skin lesions in the mice model, accompanied by less infiltration of inflammatory cells and lower local levels of proinflammatory cytokines, including TWEAK, TNF-α and interleukin (IL)-17. Fn14 deficiency also attenuates the up-regulation of TNFR1 in skin lesions of atopic dermatitis. Moreover, topical TWEAK exacerbates skin lesion in the wild-type but not in the Fn14 knock-out mice. In vitro, TWEAK enhances the expressions of IL-17, IL-18 and IFN-γ in keratinocytes under atopic dermatitis-like inflammation. These results suggest that Fn14 deficiency protects mice from experimental atopic dermatitis, involving the attenuation of inflammatory responses and keratinocyte apoptosis. In the context of atopic dermatitis-like inflammation, TWEAK modulates keratinocytes via a TNFR1-mediated pathway.
Collapse
Affiliation(s)
- Q. Liu
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - H. Wang
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - X. Wang
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - M. Lu
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - X. Tan
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - L. Peng
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - F. Tan
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - T. Xiao
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - S. Xiao
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - Y. Xia
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
13
|
Damiani G, Eggenhöffner R, Pigatto PDM, Bragazzi NL. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact Mater 2019; 4:380-386. [PMID: 31872162 PMCID: PMC6909150 DOI: 10.1016/j.bioactmat.2019.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis is a chronic, relapsing, non-contiguous, exudative eczema/dermatitis, which represents a complex, multi-factorial disorder, due to an impairment of the stratum corneum barrier. Currently available drugs have a low skin bioavailability and may give rise to severe adverse events. Nanotechnologies, including nano-particles, liposomes, nano-gels, nano-mixtures, nano-emulsions and other nano-carriers, offer unprecedented solutions to these issues, enabling: i) the management of different clinical forms of atopic dermatitis, especially the recalcitrant ones, i) a better bio-availability and trans-dermal drug targeted delivery at the inflammation site, ii) dose control, iii) significant improvements both in clinical symptoms and immune responses, iv) with less adverse events being reported and a better safety profile. However, some nano-sized structures could amplify and even worsen symptoms in particularly susceptible individuals. Furthermore, most studies included in the present systematic review have been conducted in-vitro or in-vivo, with few randomized controlled clinical trials (RCTs). Future investigations should adopt this design in order to enable scholars achieving robust findings and evidence. Therefore, given the above-mentioned shortcomings, further research in the field is urgently warranted. Atopic dermatitis is a chronic, relapsing eczema/dermatitis, due to an impairment of the stratum corneum barrier. Currently available drugs have a low skin bioavailability and may give rise to severe adverse events. Nanotechnologies offer unprecedented solutions, enabling the management of different clinical forms of atopic dermatitis.
Collapse
Affiliation(s)
- Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
- Young Dermatologists Italian Network, Centro Studi GISED, Bergamo, Italy
| | - Roberto Eggenhöffner
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Daniele Maria Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Nicola Luigi Bragazzi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Postgraduate School of Public Health, Department of Health Sciences, University of Genoa, Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Corresponding author. Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Mumtaz S, Bhartiya P, Kaushik N, Adhikari M, Lamichhane P, Lee SJ, Kaushik NK, Choi EH. Pulsed high-power microwaves do not impair the functions of skin normal and cancer cells in vitro: A short-term biological evaluation. J Adv Res 2019; 22:47-55. [PMID: 31956441 PMCID: PMC6961216 DOI: 10.1016/j.jare.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pulsed high power microwave (MW) at a frequency 3.5 GHz was generated. MW did not induce cell death in skin fibroblast normal cells and melanoma cells. MW did not alter the morphology of melanoma cells. Gene expression related to ATP synthesis and proliferation can get altered by MW. MW selectively stimulated viability and proliferation of only melanoma cells.
Over the past few decades, microwave (MW) radiation has been widely used, and its biological effects have been extensively investigated. However, the effect of MW radiation on human skin biology is not well understood. We study the effects of pulsed high-power microwaves (HPMs) on melanoma (G361 and SK-Mel-31) and normal human dermal fibroblast (NHDF) cells. A pulsed power generator (Chundoong) was used to generate pulsed HPMs (dominant frequency: 3.5 GHz). For treatment 1, 5, 15, and 45 shots are given to cells in which the electromagnetic energy of 0.6 J was delivered to the cells at each trigger shot. Cell viability, proliferation rate, apoptosis, cell death, metabolic activity, and oxygen-free radical regulation were evaluated after the MW exposure at low and high doses. MW exposure increased the viabilities and proliferation rates of both melanoma cell lines in a dose-dependent manner, while no significant effects on the fibroblast cells were observed. We found an elevated level of ATP and mitochondrial activity in melanoma cells. Also, it was observed that MW exposure did not affect cell death in melanoma and fibroblast cells. A polymerase chain reaction analysis indicated that the MWs induced dose-dependent proliferation markers without affecting the cell cycle and apoptotic genes in the melanoma cells. Our findings show the differential effects of the MW radiation on the melanoma cells, compared to those on the fibroblast cells.
Collapse
Affiliation(s)
- Sohail Mumtaz
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Pradeep Bhartiya
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Pradeep Lamichhane
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.,Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.,Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
15
|
Use of Physcion to Improve Atopic Dermatitis-Like Skin Lesions through Blocking of Thymic Stromal Lymphopoietin. Molecules 2019; 24:molecules24081484. [PMID: 30991764 PMCID: PMC6514936 DOI: 10.3390/molecules24081484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022] Open
Abstract
Physcion is well known for the treatment of carcinoma. However, the therapeutic effect of physcion on atopic dermatitis (AD) through the inhibition of thymic stromal lymphopoietin (TSLP) level remains largely unknown. In this study, we investigated the anti-AD effect of physcion using HMC-1 cells, splenocytes, and a murine model. Treatment with physcion decreased production and mRNA expression levels of TSLP, IL-6, TNF-ɑ, and IL-1β in activated HMC-1 cells. Physcion reduced the expression levels of RIP2/caspase-1 and phospho (p)ERK/pJNK/pp38 in activated HMC-1 cells. Physcion suppressed the expression levels of pIKKβ/NF-κB/pIkB in activated HMC-1 cells. Moreover, physcion attenuated the production levels of TSLP, IL-4, IL-6, TNF-, and IFN-γ from activated splenocytes. Oral administration of physcion improved the severity of 2,4-dinitrochlorobenzene-induced AD-like lesional skin through reducing infiltration of inflammatory cells and mast cells, and the protein and mRNA levels of TSLP, IL-4, and IL-6 in the lesional skin tissues. Physcion attenuated histamine, IgE, TSLP, IL-4, IL-6, and TNF- levels in serum. In addition, physcion inhibited caspase-1 activation in the lesional skin tissues. These findings indicate that physcion could ameliorate AD-like skin lesions by inhibiting TSLP levels via caspase-1/MAPKs/NF-kB signalings, which would provide experimental evidence of the therapeutic potential of physcion for AD.
Collapse
|
16
|
A novel all-trans retinoic acid derivative inhibits proliferation and induces apoptosis of myelodysplastic syndromes cell line SKM-1 cells via up-regulating p53. Int Immunopharmacol 2018; 65:561-570. [DOI: 10.1016/j.intimp.2018.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022]
|