1
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
2
|
Dousti M, Parsa S, Sani F, Bagherzadeh E, Zamanzadeh Z, Dara M, Sani M, Azarpira N. Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model. J Cell Mol Med 2024; 28:e70040. [PMID: 39219020 PMCID: PMC11366680 DOI: 10.1111/jcmm.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three-dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super-paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co-culture of Human umbilical vein endothelial cells (HUVEC) and MG-63 cells as a model of bone microtissue. HUVECs: MG-63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis-related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen-I, as well as the expression of the angiogenesis-related marker, CD-31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co-culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior-performance implants, preventing device failure.
Collapse
Affiliation(s)
- Maryam Dousti
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Department of Genetics, Faculty of Biological Sciences and TechnologyShahid Ashrafi Esfahani UniversityIsfahanIran
| | - Shima Parsa
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
| | - Farnaz Sani
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
| | | | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and TechnologyShahid Ashrafi Esfahani UniversityIsfahanIran
| | - Mahintaj Dara
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Tissue Engineering Department, School of Advanced Medical Science and TechnologyShiraz University of Medical ScienceShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Transplant Research CenterShiraz University of Medical ScienceShirazIran
| |
Collapse
|
3
|
Liu Y, Tang Q, Tao Q, Dong H, Shi Z, Zhou L. Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives. J Adv Res 2024:S2090-1232(24)00125-5. [PMID: 38565404 DOI: 10.1016/j.jare.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumour of the central nervous system. Despite recent advances in multimodal GBM therapy incorporating surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy), and supportive care, the overall survival (OS) remains poor, and long-term survival is rare. Currently, the primary obstacles hindering the effectiveness of GBM treatment are still the blood-brain barrier and tumor heterogeneity. In light of its substantial advantages over conventional therapies, such as strong penetrative ability and minimal side effects, low-frequency magnetic fields (LF-MFs) therapy has gradually caught the attention of scientists. AIM OF REVIEW In this review, we shed the light on the current status of applying LF-MFs in the treatment of GBM. We specifically emphasize our current understanding of the mechanisms by which LF-MFs mediate anticancer effects and the challenges faced by LF-MFs in treating GBM cells. Furthermore, we discuss the prospective applications of magnetic field therapy in the future treatment of GBM. Key scientific concepts of review: The review explores the current progress on the use of LF-MFs in the treatment of GBM with a special focus on the potential underlying mechanisms of LF-MFs in anticancer effects. Additionally, we also discussed the complex magnetic field features and biological characteristics related to magnetic bioeffects. Finally, we proposed a promising magnetic field treatment strategy for future applications in GBM therapy.
Collapse
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, China
| | - Quan Tao
- Shanghai Institute of Microsystem and Information Technology, China
| | - Hui Dong
- Shanghai Institute of Microsystem and Information Technology, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, China.
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, China.
| |
Collapse
|
4
|
Popescu RC, Calin BS, Tanasa E, Vasile E, Mihailescu M, Paun IA. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Front Bioeng Biotechnol 2023; 11:1273277. [PMID: 38170069 PMCID: PMC10758856 DOI: 10.3389/fbioe.2023.1273277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, Magurele, Romania
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
| | - Eugenia Tanasa
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Mona Mihailescu
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Mocanu-Dobranici AE, Costache M, Dinescu S. Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation. Int J Mol Sci 2023; 24:ijms24032028. [PMID: 36768351 PMCID: PMC9916404 DOI: 10.3390/ijms24032028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.
Collapse
Affiliation(s)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
- Correspondence:
| |
Collapse
|
6
|
Cicek F, Tastekin B, Baldan I, Tokus M, Pelit A, Ocal I, Gunay I, Ogur HU, Cicek H. Effect of 40 Hz Magnetic Field Application in Posttraumatic Muscular Atrophy Development on Muscle Mass and Contractions in Rats. Bioelectromagnetics 2022; 43:453-461. [PMID: 36477897 DOI: 10.1002/bem.22429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Muscle atrophy refers to the deterioration of muscle tissue due to a long-term decrease in muscle function. In the present study, we simulated rectus femoris muscle atrophy experimentally and investigated the effect of pulsed electromagnetic field (PEMF) application on the atrophy development through muscle mass, maximal contraction force, and contraction-relaxation time. A quadriceps tendon rupture with a total tenotomy was created on the rats' hind limbs, inhibiting knee extension for 6 weeks, and this restriction of the movement led to the development of disuse atrophy, while the control group underwent no surgery. The operated and control groups were divided into subgroups according to PEMF application (1.5 mT for 45 days) or no PEMF. All groups were sacrificed after 6 weeks and had their entire rectus femoris removed. To measure the contraction force, the muscles were placed in an organ bath connected to a transducer. As a result of the atrophy, muscle mass and strength were reduced in the operated group, while no muscle mass loss was observed in the operated PEMF group. Furthermore, measurements of single, incomplete and full tetanic contraction force and contraction time (CT) did not change significantly in the operated group that received the PEMF application. The PEMF application prevented atrophy resulting from 6 weeks of immobility, according to the contraction parameters. The effects of PEMF on contraction force and CT provide a basis for further studies in which PEMF is investigated as a noninvasive therapy for disuse atrophy development. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Figen Cicek
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Bora Tastekin
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Ilknur Baldan
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Murat Tokus
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Aykut Pelit
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Isil Ocal
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Ismail Gunay
- Department of Biophysics, Cukurova University, Adana, Turkey
| | - Hasan U Ogur
- Adana City Hospital, Orthopedics and Traumatology Clinics, Adana, Turkey
| | - Hakan Cicek
- Adana City Hospital, Orthopedics and Traumatology Clinics, Adana, Turkey
| |
Collapse
|
7
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
8
|
Aparicio-Bautista DI, Chávez-Valenzuela D, Ambriz-Álvarez G, Córdova-Fraga T, Reyes-Grajeda JP, Medina-Contreras Ó, Rodríguez-Cruz F, García-Sierra F, Zúñiga-Sánchez P, Gutiérrez-Gutiérrez AM, Arellanes-Robledo J, Basurto-Islas G. An Extremely Low-Frequency Vortex Magnetic Field Modifies Protein Expression, Rearranges the Cytoskeleton, and Induces Apoptosis of a Human Neuroblastoma Cell Line. Bioelectromagnetics 2022; 43:225-244. [PMID: 35437793 DOI: 10.1002/bem.22400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Homogeneous extremely low-frequency electromagnetic fields (ELF-EMFs) alter biological phenomena, including the cell phenotype and proliferation rate. Heterogenous vortex magnetic fields (VMFs), a new approach of exposure to magnetic fields, induce systematic movements on charged biomolecules from target cells; however, the effect of VMFs on living systems remains uncertain. Here, we designed, constructed, and characterized an ELF-VMF-modified Rodin's coil to expose SH-SY5Y cells. Samples were analyzed by performing 2D-differential-gel electrophoresis, identified by MALDI-TOF/TOF, validated by western blotting, and characterized by confocal microscopy. A total of 106 protein spots were differentially expressed; 40 spots were downregulated and 66 were upregulated in the exposed cell proteome, compared to the control cell proteome. The identified spots are associated with cytoskeleton and cell viability proteins, and according to the protein-protein interaction network, a significant interaction among them was found. Our data revealed a decrease in cell survival associated with apoptotic cells without effects on the cell cycle, as well as evident changes in the cytoskeleton. We demonstrated that ELF-VMFs, at a specific frequency and exposure time, alter the cell proteome and structurally affect the target cells. This is the first report showing that VMF application might be a versatile system for testing different hypotheses in living systems, using appropriate exposure parameters.© 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Diana I Aparicio-Bautista
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | | | - Teodoro Córdova-Fraga
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| | - Juan P Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Óscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Fanny Rodríguez-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Zacatenco, Ciudad de México, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Zacatenco, Ciudad de México, México
| | | | | | - Jaime Arellanes-Robledo
- CONACYT-Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| |
Collapse
|
9
|
Zadeh-Haghighi H, Simon C. Radical pairs may play a role in microtubule reorganization. Sci Rep 2022; 12:6109. [PMID: 35414166 PMCID: PMC9005667 DOI: 10.1038/s41598-022-10068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
The exact mechanism behind general anesthesia remains an open question in neuroscience. It has been proposed that anesthetics selectively prevent consciousness and memory via acting on microtubules (MTs). It is known that the magnetic field modulates MT organization. A recent study shows that a radical pair model can explain the isotope effect in xenon-induced anesthesia and predicts magnetic field effects on anesthetic potency. Further, reactive oxygen species are also implicated in MT stability and anesthesia. Based on a simple radical pair mechanism model and a simple mathematical model of MT organization, we show that magnetic fields can modulate spin dynamics of naturally occurring radical pairs in MT. We propose that the spin dynamics influence a rate in the reaction cycle, which translates into a change in the MT density. We can reproduce magnetic field effects on the MT concentration that have been observed. Our model also predicts additional effects at slightly higher fields. Our model further predicts that the effect of zinc on the MT density exhibits isotopic dependence. The findings of this work make a connection between microtubule-based and radical pair-based quantum theories of consciousness.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
10
|
Micro Magnetic Field Produced by Fe 3O 4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity. Polymers (Basel) 2020; 12:polym12092045. [PMID: 32911730 PMCID: PMC7570298 DOI: 10.3390/polym12092045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
The low cellular activity of poly-l-lactic acid (PLLA) limits its application in bone scaffold, although PLLA has advantages in terms of good biocompatibility and easy processing. In this study, superparamagnetic Fe3O4 nanoparticles were incorporated into the PLLA bone scaffold prepared by selective laser sintering (SLS) for continuously and steadily enhancing cellular activity. In the scaffold, each Fe3O4 nanoparticle was a single magnetic domain without a domain wall, providing a micro-magnetic source to generate a tiny magnetic field, thereby continuously and steadily generating magnetic stimulation to cells. The results showed that the magnetic scaffold exhibited superparamagnetism and its saturation magnetization reached a maximum value of 6.1 emu/g. It promoted the attachment, diffusion, and interaction of MG63 cells, and increased the activity of alkaline phosphatase, thus promoting the cell proliferation and differentiation. Meanwhile, the scaffold with 7% Fe3O4 presented increased compressive strength, modulus, and Vickers hardness by 63.4%, 78.9%, and 19.1% compared with the PLLA scaffold, respectively, due to the addition of Fe3O4 nanoparticles, which act as a nanoscale reinforcement in the polymer matrix. All these positive results suggested that the PLLA/Fe3O4 scaffold with good magnetic properties is of great potential for bone tissue engineering applications.
Collapse
|