1
|
Hegedűs D, Grolmusz V. Robust circuitry-based scores of structural importance of human brain areas. PLoS One 2024; 19:e0292613. [PMID: 38232101 DOI: 10.1371/journal.pone.0292613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 01/19/2024] Open
Abstract
We consider the 1015-vertex human consensus connectome computed from the diffusion MRI data of 1064 subjects. We define seven different orders on these 1015 graph vertices, where the orders depend on parameters derived from the brain circuitry, that is, from the properties of the edges (or connections) incident to the vertices ordered. We order the vertices according to their degree, the sum, the maximum, and the average of the fiber counts on the incident edges, and the sum, the maximum and the average length of the fibers in the incident edges. We analyze the similarities of these seven orders by the Spearman correlation coefficient and by their inversion numbers and have found that all of these seven orders have great similarities. In other words, if we interpret the orders as scoring of the importance of the vertices in the consensus connectome, then the scores of the vertices will be similar in all seven orderings. That is, important vertices of the human connectome typically have many neighbors connected with long and thick axonal fibers (where thickness is measured by fiber numbers), and their incident edges have high maximum and average values of length and fiber-number parameters, too. Therefore, these parameters may yield robust ways of deciding which vertices are more important in the anatomy of our brain circuitry than the others.
Collapse
Affiliation(s)
- Dániel Hegedűs
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
| |
Collapse
|
2
|
Yang X, Xu W, Leng D, Wen Y, Wu L, Li R, Huang J, Bo X, He S. Exploring novel disease-disease associations based on multi-view fusion network. Comput Struct Biotechnol J 2023; 21:1807-1819. [PMID: 36923471 PMCID: PMC10009443 DOI: 10.1016/j.csbj.2023.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Established taxonomy system based on disease symptom and tissue characteristics have provided an important basis for physicians to correctly identify diseases and treat them successfully. However, these classifications tend to be based on phenotypic observations, lacking a molecular biological foundation. Therefore, there is an urgent to integrate multi-dimensional molecular biological information or multi-omics data to redefine disease classification in order to provide a powerful perspective for understanding the molecular structure of diseases. Therefore, we offer a flexible disease classification that integrates the biological process, gene expression, and symptom phenotype of diseases, and propose a disease-disease association network based on multi-view fusion. We applied the fusion approach to 223 diseases and divided them into 24 disease clusters. The contribution of internal and external edges of disease clusters were analyzed. The results of the fusion model were compared with Medical Subject Headings, a traditional and commonly used disease taxonomy. Then, experimental results of model performance comparison show that our approach performs better than other integration methods. As it was observed, the obtained clusters provided more interesting and novel disease-disease associations. This multi-view human disease association network describes relationships between diseases based on multiple molecular levels, thus breaking through the limitation of the disease classification system based on tissues and organs. This approach which motivates clinicians and researchers to reposition the understanding of diseases and explore diagnosis and therapy strategies, extends the existing disease taxonomy. Availability of data and materials The preprocessed dataset and source code supporting the conclusions of this article are available at GitHub repository https://github.com/yangxiaoxi89/mvHDN.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Clinical Medicine Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Wenjian Xu
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China.,Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,MOE Key Laboratory of Major Diseases in Children, Beijing 100045, China.,Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing 100045, China
| | - Dongjin Leng
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yuqi Wen
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Lianlian Wu
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Ruijiang Li
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Jian Huang
- Clinical Medicine Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
3
|
Dotolo S, Marabotti A, Rachiglio AM, Esposito Abate R, Benedetto M, Ciardiello F, De Luca A, Normanno N, Facchiano A, Tagliaferri R. A multiple network-based bioinformatics pipeline for the study of molecular mechanisms in oncological diseases for personalized medicine. Brief Bioinform 2021; 22:6287337. [PMID: 34050359 PMCID: PMC8574709 DOI: 10.1093/bib/bbab180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Motivation Assessment of genetic mutations is an essential element in the modern era of personalized cancer treatment. Our strategy is focused on ‘multiple network analysis’ in which we try to improve cancer diagnostics by using biological networks. Genetic alterations in some important hubs or in driver genes such as BRAF and TP53 play a critical role in regulating many important molecular processes. Most of the studies are focused on the analysis of the effects of single mutations, while tumors often carry mutations of multiple driver genes. The aim of this work is to define an innovative bioinformatics pipeline focused on the design and analysis of networks (such as biomedical and molecular networks), in order to: (1) improve the disease diagnosis; (2) identify the patients that could better respond to a given drug treatment; and (3) predict what are the primary and secondary effects of gene mutations involved in human diseases. Results By using our pipeline based on a multiple network approach, it has been possible to demonstrate and validate what are the joint effects and changes of the molecular profile that occur in patients with metastatic colorectal carcinoma (mCRC) carrying mutations in multiple genes. In this way, we can identify the most suitable drugs for the therapy for the individual patient. This information is useful to improve precision medicine in cancer patients. As an application of our pipeline, the clinically significant case studies of a cohort of mCRC patients with the BRAF V600E-TP53 I195N missense combined mutation were considered. Availability The procedures used in this paper are part of the Cytoscape Core, available at (www.cytoscape.org). Data used here on mCRC patients have been published in [55]. Supplementary Information A supplementary file containing a more detailed discussion of this case study and other cases is available at the journal site as Supplementary Data.
Collapse
Affiliation(s)
- Serena Dotolo
- Dipartimento di Scienze Aziendali, Management & Innovation Systems, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Anna Marabotti
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori -IRCCS - Fondazione G. Pascale, Naples, Italy
| | | | - Fortunato Ciardiello
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Angelo Facchiano
- Institute of Food Sciences, Italian National Research Council (CNR), Avellino, Italy
| | - Roberto Tagliaferri
- Dipartimento di Scienze Aziendali, Management & Innovation Systems, Università degli Studi di Salerno, Fisciano (SA), Italy
| |
Collapse
|
4
|
Abstract
Establishing a node importance ranking is a problem that has attracted the attention of many researchers in recent decades. For unweighted networks where the edges do not have any attached weight, many proposals have been presented, considering local or global information of the networks. On the contrary, it occurs in undirected edge-weighted networks, where the proposals to address this problem have been more scarce. In this paper, a ranking method of node importance for undirected and edge-weighted is provided, generalizing the measure of line importance (DIL) based on the centrality degree proposed by Opsahl. The experimentation was done on five real networks and the results illustrate the benefits of our proposal.
Collapse
|
5
|
Zhang Y, Chen Y, Hu T. PANDA: Prioritization of autism-genes using network-based deep-learning approach. Genet Epidemiol 2020; 44:382-394. [PMID: 32039500 DOI: 10.1002/gepi.22282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 11/06/2022]
Abstract
Understanding the genetic background of complex diseases and disorders plays an essential role in the promising precision medicine. The evaluation of candidate genes, however, requires time-consuming and expensive experiments given a large number of possibilities. Thus, computational methods have seen increasing applications in predicting gene-disease associations. We proposed a bioinformatics framework, Prioritization of Autism-genes using Network-based Deep-learning Approach (PANDA). Our approach aims to identify autism-genes across the human genome based on patterns of gene-gene interactions and topological similarity of genes in the interaction network. PANDA trains a graph deep learning classifier using the input of the human molecular interaction network and predicts and ranks the probability of autism association of every node (gene) in the network. PANDA was able to achieve a high classification accuracy of 89%, outperforming three other commonly used machine learning algorithms. Moreover, the gene prioritization ranking list produced by PANDA was evaluated and validated using an independent large-scale exome-sequencing study. The top 10% of PANDA-ranked genes were found significantly enriched for autism association.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Computer Science, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Yuanzhu Chen
- Department of Computer Science, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Ting Hu
- Department of Computer Science, Memorial University, St. John's, Newfoundland and Labrador, Canada.,School of Computing, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|