1
|
Li H, Li S, Zhang H, Gu J, Dai Y, Wu R, Wang Y, Han R, Sun G, Zhang Y, Li H, Zhao Y, Li G. Integrated GWAS and transcriptome analysis reveals key genes associated with muscle fibre and fat traits in Gushi chicken. Br Poult Sci 2024:1-11. [PMID: 39364777 DOI: 10.1080/00071668.2024.2400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 10/05/2024]
Abstract
1. In the following experiment meat quality traits of a Gushi-Anka F2 resource population were measured, and their heritability estimated. Intramuscular fat (IMF) had medium heritability (0.35) but leg muscle fibre density (LMD), leg muscle fibre diameter (LMF), breast muscle fibre density (BMD), fresh fat content (FFA), and absolute dry fat content (AFC) had low heritability (0-0.2). The IMF presented the most important genetic additive effect among the poultry meat quality-related traits studied.2. The phenotypic data of meat quality traits in the Gushi-Anka F2 resource population were combined with genotyping by sequencing (GBS) data to obtain genotype data. Six meat quality traits in 734 birds were analysed by GWAS. Based on these variants, 83 significant (-log10(p) > 4.42) single nucleotide polymorphisms and four quantitative trait loci (QTL) regions corresponding to 175 genes were identified. Further linkage disequilibrium (LD) analysis was conducted on chromosome 13 (Chr13) and chromosome 27 (Chr27) QTL regions.3. Based on the transcriptome data and GWAS results, 12 shared genes - ITGB3, DNAJC27, ETV4, C7orf50, FKBP1B, G3BP1, IGF2BP1, KCNH6, LOC416263, SCARA5, SMIM5 and TBL1XR1 were identified as candidate genes influencing muscle fibre and fat traits.
Collapse
Affiliation(s)
- H Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - S Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - H Zhang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - J Gu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Y Dai
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - R Wu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Y Wang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - R Han
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - G Sun
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Y Zhang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - H Li
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Y Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan, China
| | - G Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zou X, Liu Q, Guan Q, Zhao M, Zhu X, Pan Y, Liu L, Gao Z. Muscle Fiber Characteristics and Transcriptome Analysis in Slow- and Fast-Growing Megalobrama amblycephala. Genes (Basel) 2024; 15:179. [PMID: 38397169 PMCID: PMC10888202 DOI: 10.3390/genes15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Growth is an important trait in aquaculture that is influenced by various factors, among which genetic regulation plays a crucial role. Megalobrama amblycephala, one of the most important freshwater species in China, exhibits wide variations in body mass among individuals of the same age within the same pool. But the molecular mechanisms underlying wide variation in body mass remain unclear. Here, we performed muscle histological and transcriptome analysis of muscle tissues from Fast-Growing (FG) and Slow-Growing (SG) M. amblycephala at the age of 4 months old (4 mo) and 10 months old (10 mo) to elucidate its muscle development and growth mechanism. The muscle histological analysis showed smaller diameter and higher total number of muscle fibers in FG compared to SG at 4 mo, while larger diameter and total number of muscle fibers were detected in FG at 10 mo. The transcriptome analysis of muscle tissue detected 1171 differentially expressed genes (DEGs) between FG and SG at 4 mo, and 718 DEGs between FG and SG at 10 mo. Furthermore, 44 DEGs were consistently up-regulated in FG at both 4 mo and 10 mo. Up-regulated DEGs in FG at 4 mo were mainly enriched in the pathways related to cell proliferation, while down-regulated DEGs were significantly enriched in cell fusion and muscle contraction. Up-regulated DEGs in FG at 10 mo were mainly enriched in the pathways related to cell proliferation and protein synthesis. Therefore, these results provide novel insights into the molecular mechanism of M. amblycephala muscle growth at different stages, and will be of great guiding significance to promote the fast growth of M. amblycephala.
Collapse
Affiliation(s)
- Xue Zou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qi Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qianqian Guan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Ming Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China
| |
Collapse
|
3
|
Alsoufi MA, Liu Y, Cao C, Zhao J, Kang J, Li M, Wang K, He Y, Ge C. Integrated Transcriptomics Profiling in Chahua and Digao Chickens' Breast for Assessment Molecular Mechanism of Meat Quality Traits. Genes (Basel) 2022; 14:95. [PMID: 36672833 PMCID: PMC9859260 DOI: 10.3390/genes14010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022] Open
Abstract
Meat quality traits are an important economic trait and remain a major argument, from the producer to the consumer. However, there are a few candidate genes and pathways of chicken meat quality traits that were reported for chicken molecular breeding. The purpose of the present study is to identify the candidate genes and pathways associated with meat quality underlying variations in meat quality. Hence, transcriptome profiles of breast tissue in commercial Digao (DG, 5 male) and Chahua (CH, 5 male) native chicken breeds were analyzed at the age of 100 days. The results found 3525 differentially expressed genes (DEGs) in CH compared to DG with adjusted p-values of ≤0.05 and log2FC ≥ 0.1 FDR ≤ 0.05. Functional analysis of GO showed that the DEGs are mainly involved in the two types of processes of meat quality, such as positive regulation of the metabolic process, extracellular structure organization, collagen trimer, cellular amino acid metabolic process, cellular amino acid catabolic process, and heme binding. Functional analysis of KEGG showed that the DEGs are mainly involved in the two types of processes of meat quality, such as oxidative phosphorylation, carbon metabolism, valine, leucine, and isoleucine degradation, and fatty acid degradation. Many of the DEGs are well known to be related to meat quality, such as COL28A1, COL1A2, MB, HBAD, HBA1, ACACA, ACADL, ACSL1, ATP8A1, CAV1, FADS2, FASN, DCN, CHCHD10, AGXT2, ALDH3A2, and MORN4. Therefore, the current study detected multiple pathways and genes that could be involved in the control of the meat quality traits of chickens. These findings should be used as an essential resource to improve the accuracy of selection for meat traits in chickens using marker-assisted selection based on differentially expressed genes.
Collapse
Affiliation(s)
- Mohammed Abdulwahid Alsoufi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Department of Animal Production, Faculty of Agriculture, Sana’a University, Alwehdah Street, Sana’a P.O. Box 19509, Yemen
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Biological Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jinbo Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengyuan Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Zhou D, Wang Y, Yang R, Wang F, Zhao Z, Wang X, Xie L, Tian X, Wang G, Li B, Gong Y. The MyoD1 Promoted Muscle Differentiation and Generation by Activating CCND2 in Guanling Cattle. Animals (Basel) 2022; 12:ani12192571. [PMID: 36230312 PMCID: PMC9559206 DOI: 10.3390/ani12192571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to analyze the transcriptome of MyoD1 gene knockout MDBK cells (bovine kidney cells) using high-throughput sequencing. For the first time, CRISPR/CAS9 technology was used to construct a MyoD1 knockout in MDBK cells and transcriptome sequence analysis was used to examine MyoD1-related target gene expression. Transcriptome sequencing indicated the presence of 723 differentially expressed genes (DEGs) by comparing wild type and MyoD1 knockout MDBK cells and included 178 upregulated and 72 downregulated genes. The DEGs are mainly enriched in Pl-3-kinase and AKT, p53 signaling pathways. Quantitative RT-PCR confirmed that PDE1B, ADAMTS1, DPT, and CCND2 were highly expressed in the leg muscle, longissimus dorsi, and shoulder of Guanling cattle, and CCND2 was inhibited after MyoD1 knockout, suggesting it may be a key downstream gene of MyoD1 and associated with muscle formation and differentiation in Guanling cattle. This provides experimental data for subsequent studies on the regulatory mechanisms of muscle differentiation in Guanling cattle.
Collapse
Affiliation(s)
- Di Zhou
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Yan Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Rong Yang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Fu Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Zhonghai Zhao
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Xin Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Lingling Xie
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Correspondence: (X.T.); (Y.G.)
| | - Guoze Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bo Li
- Guizhou Livestock and Poultry Genetic Resources Management Station, Guiyang 550001, China
| | - Yu Gong
- Guizhou Livestock and Poultry Genetic Resources Management Station, Guiyang 550001, China
- Correspondence: (X.T.); (Y.G.)
| |
Collapse
|
5
|
Ncube KT, Dzomba EF, Rosen BD, Schroeder SG, Van Tassell CP, Muchadeyi FC. Differential gene expression and identification of growth-related genes in the pituitary gland of South African goats. Front Genet 2022; 13:811193. [PMID: 36072660 PMCID: PMC9442344 DOI: 10.3389/fgene.2022.811193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Growth and carcass quality are economically important traits in goat production. This study investigated differentially expressed genes from the caprine pituitary gland transcriptome of South African indigenous goat breeds of varying growth performances and carcass quality parameters. Tissues were harvested from the pituitary gland of three South African Boer goats and three village ecotype goats all raised under similar conditions simulating intensive commercial production systems. Three additional tissues were harvested from village ecotype goats that were raised extensively on village farms. Between breed differences were investigated by comparing differential gene expression among three South African Boer and three village goats that were both raised under intensive commercial production system at a research farm. Within-breed differences were investigated by comparing differential gene expression among three village goats raised under extensive conditions (on-farm in Pella, S.A. village farming community) and three village goats raised under intensive commercial production system (at ARC research farm in Pretoria, South Africa. Total RNA was isolated from the pituitary gland of 36-week-old animals (n = 9) and sequenced individually in triplicates. An average of 28,298,512 trimmed, and quality-controlled reads/animal were mapped to the goat genome (Capra_hircus.ARS1.94) using HiSat2 software. Transcript assembly and quantification yielded 104 differentially expressed genes for village goats raised under extensive system and 62 for village goats raised under the intensive production system at the false discovery rate (FRD) of ≤0.05 and a fold change of ≥2. Growth-related genes such as POU3F4 and TSHZ1 were highly expressed within breeds raised under both production systems. Conversely, growth-related genes such as FGFR2 and SMPX genes were highly expressed between breeds raised under similar production systems. Ballgown analysis revealed a high expression of GH1 and IGF1 in the intensively raised compared to extensively raised goats. Both genes were also highly expressed in the village goats when compared to the Boer. The differential gene expression data provided insights into genes and molecular mechanisms associated with growth and growth development in goats.
Collapse
Affiliation(s)
- Keabetswe T. Ncube
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa
| | - Ben D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Stephen G. Schroeder
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Curt P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Farai. C. Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
- *Correspondence: Farai. C. Muchadeyi,
| |
Collapse
|
6
|
Network Meta-Analysis of Chicken Microarray Data Following Avian Influenza Challenge—A Comparison of Highly and Lowly Pathogenic Strains. Genes (Basel) 2022; 13:genes13030435. [PMID: 35327988 PMCID: PMC8953847 DOI: 10.3390/genes13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The current bioinformatics study was undertaken to analyze the transcriptome of chicken (Gallus gallus) after influenza A virus challenge. A meta-analysis was carried out to explore the host expression response after challenge with lowly pathogenic avian influenza (LPAI) (H1N1, H2N3, H5N2, H5N3 and H9N2) and with highly pathogenic avian influenza (HPAI) H5N1 strains. To do so, ten microarray datasets obtained from the Gene Expression Omnibus (GEO) database were normalized and meta-analyzed for the LPAI and HPAI host response individually. Different undirected networks were constructed and their metrics determined e.g., degree centrality, closeness centrality, harmonic centrality, subgraph centrality and eigenvector centrality. The results showed that, based on criteria of centrality, the CMTR1, EPSTI1, RNF213, HERC4L, IFIT5 and LY96 genes were the most significant during HPAI challenge, with PARD6G, HMG20A, PEX14, RNF151 and TLK1L having the lowest values. However, for LPAI challenge, ZDHHC9, IMMP2L, COX7C, RBM18, DCTN3, and NDUFB1 genes had the largest values for aforementioned criteria, with GTF3C5, DROSHA, ATRX, RFWD2, MED23 and SEC23B genes having the lowest values. The results of this study can be used as a basis for future development of treatments/preventions of the effects of avian influenza in chicken.
Collapse
|
7
|
Xu K, Zhou H, Han C, Xu Z, Ding J, Zhu J, Qin C, Luo H, Chen K, Jiang S, Liu J, Zhu W, Meng H. Transcriptomic Analysis of MSTN Knockout in the Early Differentiation of Chicken Fetal Myoblasts. Genes (Basel) 2021; 13:genes13010058. [PMID: 35052399 PMCID: PMC8774668 DOI: 10.3390/genes13010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, Myostatin (MSTN) is a known negative regulator of muscle growth and development, but its role in birds is poorly understood. To investigate the molecular mechanism of MSTN on muscle growth and development in chickens, we knocked out MSTN in chicken fetal myoblasts (CFMs) and sequenced the mRNA transcriptomes. The amplicon sequencing results show that the editing efficiency of the cells was 76%. The transcriptomic results showed that 296 differentially expressed genes were generated after down-regulation of MSTN, including angiotensin I converting enzyme (ACE), extracellular fatty acid-binding protein (EXFABP) and troponin T1, slow skeletal type (TNNT1). These genes are closely associated with myoblast differentiation, muscle growth and energy metabolism. Subsequent enrichment analysis showed that DEGs of CFMs were related to MAPK, Pl3K/Akt, and STAT3 signaling pathways. The MAPK and Pl3K/Akt signaling pathways are two of the three known signaling pathways involved in the biological effects of MSTN in mammals, and the STAT3 pathway is also significantly enriched in MSTN knock out chicken leg muscles. The results of this study will help to understand the possible molecular mechanism of MSTN regulating the early differentiation of CFMs and lay a foundation for further research on the molecular mechanism of MSTN involvement in muscle growth and development.
Collapse
Affiliation(s)
- Ke Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Hao Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Chengxiao Han
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430072, China;
| | - Jinmei Ding
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Jianshen Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Chao Qin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Huaixi Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Kangchun Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Shengyao Jiang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Jiajia Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Wenqi Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - He Meng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
- Correspondence:
| |
Collapse
|
8
|
Revealing Pathways Associated with Feed Efficiency and Meat Quality Traits in Slow-Growing Chickens. Animals (Basel) 2021; 11:ani11102977. [PMID: 34679997 PMCID: PMC8532858 DOI: 10.3390/ani11102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Korat is a new chicken breed with high-protein meat, low fat, and low purine content. However, the effects of improving the breed’s feed efficiency, which would enhance production, on meat quality are unknown. Hence, understanding the genetic architecture underlying feed efficiency and meat quality traits in chicken offers new opportunities toward genetic improvement. Through a weighted gene co-expression network analysis on Korat chickens, the presented results provide new information on the molecular pathways that play important roles in FE and meat quality that could help achieve the optimum feed efficiency while maintaining meat quality in Korat chickens. Abstract Here, molecular pathways and genes involved in the feed efficiency (FE) and thigh-meat quality of slow-growing Korat chickens were investigated. Individual feed intake values and body weights were collected weekly to the calculate feed conversion ratios (FCR) and residual feed intake. The biochemical composition and meat quality parameters were also measured. On the basis of extreme FCR values at 10 weeks of age, 9 and 12 birds from the high and the low FCR groups, respectively, were selected, and their transcriptomes were investigated using the 8 × 60 K Agilent chicken microarray. A weighted gene co-expression network analysis was performed to determine the correlations between co-expressed gene modules and FE, thigh-meat quality, or both. Groups of birds with different FE values also had different nucleotide, lipid, and protein contents in their thigh muscles. In total, 38 modules of co-expressed genes were identified, and 12 were correlated with FE and some meat quality traits. A functional analysis highlighted several enriched functions, such as biological processes, metabolic processes, nucleotide metabolism, and immune responses. Several molecular factors were involved in the interactions between FE and meat quality, including the assembly competence domain, baculoviral IAP repeat containing 5, cytochrome c oxidase assembly factor 3, and myosin light chain 9 genes.
Collapse
|
9
|
Chen S, Yan C, Xiao J, Liu W, Li Z, Liu H, Liu J, Zhang X, Ou M, Chen Z, Li W, Zhao X. Domestication and Feed Restriction Programming Organ Index, Dopamine, and Hippocampal Transcriptome Profile in Chickens. Front Vet Sci 2021; 8:701850. [PMID: 34604368 PMCID: PMC8481600 DOI: 10.3389/fvets.2021.701850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
The domestication process exerts different phenotypic plasticity between slow- and fast-growing breeds of chicken. Feed restriction has a critical role in production performance, physiological plasticity, and stress response. Our study aimed to explore how feed restriction programed the organ index, dopamine, and hippocampal transcriptome profile between slow- and fast-growing chickens, which were fed either ad libitum (SA and FA), or feed restricted to 70% of ad libitum (SR and FR), for 30 days. Results showed that feed restriction influenced the brain organ index (P < 0.05), but not the organ index of the heart, liver, and spleen. The slow-growing breed tested had a higher brain organ index than the fast-growing breed (P < 0.05). Under feed restriction conditions, both the slow- and fast-growing breeds had significantly elevated dopamine concentrations (P < 0.05) compared to those fed ad libitum. In the GO term, upregulated genes in the FA group were enriched in the mitochondria, respiratory chain, and energy metabolism compared to the SA group (P < 0.05). Membranes and ribosomes were enriched in the cellular component between the SR and FR groups (P < 0.05). In the KEGG functional pathways, upregulated DEGs in the FR group were enriched in the cardiovascular disease category and neurodegenerative disease category compared to the FA group (P < 0.05). Downregulated DEGs in the FA group were enriched in the oxidative phosphorylation and neurodegenerative disease categories (Parkinson's disease and Huntington's disease) compared with the SA group (P < 0.05). Upregulated DEGs in the FR group were enriched in the cardiovascular disease category, neurodegenerative disease category, and energy metabolism than the SR group (P < 0.05). In conclusion, feed restriction had profound effects on the brain organ index and plasma dopamine in the slow- and fast-growing chickens. Feed restriction may result in issues relating to cardiovascular and neurodegenerative diseases in the fast-growing breed tested, but not in the slow-growing breed.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China.,Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China
| | - Chao Yan
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Xiao
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiwei Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Liu
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China
| | - Xiben Zhang
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China
| | - Maojun Ou
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China
| | - Zelin Chen
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China
| | - Weibo Li
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China
| | - Xingbo Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China.,Guizhou Nayong Professor Workstation, China Agricultural University, Bijie, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Ren L, Liu A, Wang Q, Wang H, Dong D, Liu L. Transcriptome analysis of embryonic muscle development in Chengkou Mountain Chicken. BMC Genomics 2021; 22:431. [PMID: 34107874 PMCID: PMC8191012 DOI: 10.1186/s12864-021-07740-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Muscle is the predominant portion of any meat product, and growth performance and product quality are the core of modern breeding. The embryonic period is highly critical for muscle development, the number, shape and structure of muscle fibers are determined at the embryonic stage. Herein, we performed transcriptome analysis to reveal the law of muscle development in the embryonic stage of Chengkou Mountain Chicken at embryonic days (E) 12, 16, 19, 21. RESULTS Diameter and area of muscle fibers exhibited significant difference at different embryonic times(P < 0.01). A total of 16,330 mRNAs transcripts were detected, including 109 novel mRNAs transcripts. By comparing different embryonic muscle development time points, 2,262 in E12vsE16, 5,058 in E12vsE19, 6139 in E12vsE21, 1,282 in E16vsE19, 2,920 in E16vsE21, and 646 in E19vsE21differentially expressed mRNAs were identified. It is worth noting that 7,572 mRNAs were differentially expressed. The time-series expression profile of differentially expressed genes (DEGs) showed that the rising and falling expression trends were significantly enriched. The significant enrichment trends included 3,150 DEGs. GO enrichment analysis provided three significantly enriched categories of significantly enriched differential genes, including 65 cellular components, 88 molecular functions, and 453 biological processes. Through KEGG analysis, we explored the biological metabolic pathways involved in differentially expressed genes. A total of 177 KEGG pathways were enriched, including 19 significant pathways, such as extracellular matrix-receptor interactions. Similarly, numerous pathways related to muscle development were found, including the Wnt signaling pathway (P < 0.05), MAPK signalingpathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and mTOR signaling pathway. Among the differentially expressed genes, we selected those involved in developing 4-time points; notably, up-regulated genes included MYH1F, SLC25A12, and HADHB, whereas the down-regulated genes included STMN1, VASH2, and TUBAL3. CONCLUSIONS Our study explored the embryonic muscle development of the Chengkou Mountain Chicken. A large number of DEGs related to muscle development have been identified ,and validation of key genes for embryonic development and preliminary explanation of their role in muscle development. Overall, this study broadened our current understanding of the phenotypic mechanism for myofiber formation and provides valuable information for improving chicken quality.
Collapse
Affiliation(s)
- Lingtong Ren
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, 402460, Chongqing, P. R. China
| | - Honggan Wang
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Deqiang Dong
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China.
| |
Collapse
|
11
|
Hu Z, Cao J, Zhang J, Ge L, Zhang H, Liu X. Skeletal Muscle Transcriptome Analysis of Hanzhong Ma Duck at Different Growth Stages Using RNA-Seq. Biomolecules 2021; 11:315. [PMID: 33669581 PMCID: PMC7927120 DOI: 10.3390/biom11020315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/02/2023] Open
Abstract
As one of the most important poultry worldwide, ducks (Anas platyrhynchos) are raised mainly for meat and egg products, and muscle development in ducks is important for meat production. Therefore, an investigation of gene expression in duck skeletal muscle would significantly contribute to our understanding of muscle development. In this study, twenty-four cDNA libraries were constructed from breast and leg muscles of Hanzhong Ma ducks at day 17, 21, 27 of the embryo and postnatal at 6-month-old. High-throughput sequencing and bioinformatics were used to determine the abundances and characteristics of transcripts. A total of 632,172,628 (average 52,681,052) and 637,213,938 (average 53,101,162) reads were obtained from the sequencing data of breast and leg muscles, respectively. Over 71.63% and 77.36% of the reads could be mapped to the Anas platyrhynchos genome. In the skeletal muscle of Hanzhong duck, intron variant (INTRON), synonymous variant (SYNONYMOUS_CODING), and prime 3' UTR variant (UTR_3_PRIME) were the main single nucleotide polymorphisms (SNP) annotation information, and "INTRON", "UTR_3_PRIME", and downstream-gene variant (DOWNSTREAM) were the main insertion-deletion (InDel) annotation information. The predicted number of alternative splicing (AS) in all samples were mainly alternative 5' first exon (transcription start site)-the first exon splicing (TSS) and alternative 3' last exon (transcription terminal site)-the last exon splicing (TTS). Besides, there were 292 to 2801 annotated differentially expressed genes (DEGs) in breast muscle and 304 to 1950 annotated DEGs in leg muscle from different databases. It is worth noting that 75 DEGs in breast muscle and 49 DEGs in leg muscle were co-expressed at all developmental points of comparison, respectively. The RNA-Seq data were confirmed to be reliable by qPCR. The identified DEGs, such as CREBL2, RHEB, GDF6, SHISA2, MYLK2, ACTN3, RYR3, and STMN1, were specially highlighted, indicating their strong associations with muscle development in the Hanzhong Ma duck. KEGG pathway analysis suggested that regulation of actin cytoskeleton, oxidative phosphorylation, and focal adhesion were involved in the development of skeletal muscle. The findings from this study can contribute to future investigations of the growth and development mechanism in duck skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.H.); (J.C.); (J.Z.); (L.G.); (H.Z.)
| |
Collapse
|
12
|
Yan C, Xiao J, Chen D, Turner SP, Li Z, Liu H, Liu W, Liu J, Chen S, Zhao X. Feed Restriction Induced Changes in Behavior, Corticosterone, and Microbial Programming in Slow- and Fast-Growing Chicken Breeds. Animals (Basel) 2021; 11:ani11010141. [PMID: 33440656 PMCID: PMC7827424 DOI: 10.3390/ani11010141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Different genotypes of slow- and fast-growing chickens have phenotypic changes in appearance, behavior, and productivity in response to artificial selection. Feed restriction and gut microbiota play a vital role in controlling food intake, nutrition, and health. However, little is known about how feed restriction, as a benefit or chronic stress, influences behavior, stress response, and gut microbial programming in slow- and fast-growing chickens. This study aimed to explore slow- and fast-growing chickens who had feed restricted to 70% of ad libitum or were given ad libitum feed for 30 days to evaluate the effects on behavior, stress response, and gut microbiota. We found that feed restriction can influence behaviors in both slow- and fast-growing breeds. Feed restriction to 70% for 30 days can influence stress response and gut microbiota composition, but some changes are evident only in slow- or only in fast-growing chickens. The study provides a better understanding of how artificial selection has affected chicken biology and their response to stress challenge. Abstract This study aimed to explore the difference between two Chinese local broilers, one slow- and one fast-growing, in their response to a stress challenge. We conducted the study on slow- (Weining chicken) and fast-growing (Jinlinghua chicken) breeds, with 50 chickens from each breed either feed restricted to 70% for 30 days as a stress or given ad libitum to evaluate the effects on behavior, corticosterone, and microbial programming. Standing behavior was more frequent while exploration was less common in fast-growing breeds compared to slow-growing breeds. Food seeking and ingestion, exploration, and drinking increased, while resting decreased in the feed restricted treatments. There was no difference in corticosterone concentration between slow- and fast-growing chickens, but the level was affected by feeding treatments, and the interaction of breed and feed restriction. At the genus-level, the relative abundance of Bacteroides and Lactobacillus was higher, while Cloacibacillus and Megasphaera was lower in the slow-growing breed compared to the fast-growing breed. Feed restricted birds had a higher abundance of Mucispirillum, but lower abundance of Cloacibacillus, Clostridium XlVa and Clostridium IV. In conclusion, feed restriction to 70% for 30 days as a chronic stress stimulation caused more activity, elevated the stress response, and altered gut microbiota composition, but some changes were only evident in slow- or fast-growing chickens.
Collapse
Affiliation(s)
- Chao Yan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie 553300, China;
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie 553300, China;
| | - Di Chen
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
| | - Simon P. Turner
- Animal and Veterinary Sciences Department, Scotland’s Rural College, Edinburgh EH25 9RG, UK;
| | - Zhiwei Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
| | - Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
| | - Wen Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
| | - Jian Liu
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie 553300, China;
| | - Siyu Chen
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie 553300, China;
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Correspondence: (S.C.); (X.Z.); Tel.: +86-0757-85517214 (S.C.); +86-010-62733417 (X.Z.)
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.Y.); (J.X.); (D.C.); (Z.L.); (H.L.); (W.L.)
- Guizhou Nayong Professor Workstation, China Agricultural University, Bijie 553300, China;
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Correspondence: (S.C.); (X.Z.); Tel.: +86-0757-85517214 (S.C.); +86-010-62733417 (X.Z.)
| |
Collapse
|
13
|
RNA seq analyses of chicken reveals biological pathways involved in acclimation into different geographical locations. Sci Rep 2020; 10:19288. [PMID: 33159110 PMCID: PMC7648748 DOI: 10.1038/s41598-020-76234-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Transcriptome expression reflects genetic response in diverse conditions. In this study, RNA sequencing was utilized to profile multiple tissues such as liver, breast, caecum, and gizzard of Korean commercial chicken raised in Korea and Kyrgyzstan. We analyzed ten samples per tissue from each location to identify candidate genes which are involved in the adaptation of Korean commercial chicken to Kyrgyzstan. At false discovery rate (FDR) < 0.05 and fold change (FC) > 2, we found 315, 196, 167 and 198 genes in liver, breast, cecum, and gizzard respectively as differentially expressed between the two locations. GO enrichment analysis showed that these genes were highly enriched for cellular and metabolic processes, catalytic activity, and biological regulations. Similarly, KEGG pathways analysis indicated metabolic, PPAR signaling, FoxO, glycolysis/gluconeogenesis, biosynthesis, MAPK signaling, CAMs, citrate cycles pathways were differentially enriched. Enriched genes like TSKU, VTG1, SGK, CDK2 etc. in these pathways might be involved in acclimation of organisms into diverse climatic conditions. The qRT-PCR result also corroborated the RNA-Seq findings with R2 of 0.76, 0.80, 0.81, and 0.93 for liver, breast, caecum, and gizzard respectively. Our findings can improve the understanding of environmental acclimation process in chicken.
Collapse
|
14
|
Tang J, Shen X, Ouyang H, Luo W, Huang Y, Tian Y, Zhang X. Transcriptome analysis of pituitary gland revealed candidate genes and gene networks regulating the growth and development in goose. Anim Biotechnol 2020; 33:429-439. [PMID: 32779547 DOI: 10.1080/10495398.2020.1801457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Goose is important meat poultry and its growth and development has always been the focus of attention, but the regulation mechanisms of genes and gene network underlying growth and development of goose are still unclear. Three males of large-size Shitou goose and three males of small size Wuzong goose at 5 weeks of age were used for transcriptome analysis with deep sequencing. After slaughter, their pituitary gland was taken for RNA-seq. A total of 290 DEGs were identified by fold change ≥2 and false discovery rate (FDR) <0.05, where there were 148 upregulated genes and 142 downregulated genes in Shitou goose compared to Wuzong goose. Results also showed that the DEGs related to insulin signaling pathway could increase protein synthesis and fat production, and the interaction network of DEGs was mainly related to development, endocrine system, inflammatory diseases, tissue damage and abnormality. The DEGs involved in the growth and function of the pituitary organs may regulate the growth and development of the body by affecting the synthesis and secretion of pituitary hormones. The results of this study will help to understand the regulatory mechanism of goose growth and development.
Collapse
Affiliation(s)
- Jun Tang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Khwatenge CN, Kimathi BM, Nahashon SN. Transcriptome Analysis and Expression of Selected Cationic Amino Acid Transporters in the Liver of Broiler Chicken Fed Diets with Varying Concentrations of Lysine. Int J Mol Sci 2020; 21:E5594. [PMID: 32764289 PMCID: PMC7460557 DOI: 10.3390/ijms21165594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Amino acids are known to play a key role in gene expression regulation. Amino acid signaling is mediated via two pathways: the mammalian target of rapamycin complex 1 (mTORC1) and the amino acid responsive (AAR) pathways. Cationic amino acid transporters (CATs) are crucial in these pathways due to their sensing, signaling and transport functions. The availability of certain amino acids plays a key role in the intake of other amino acids, hence affecting growth in young birds. However, the specific mechanism for regulating lysine transport for growth is not clear. In this study, we analyze the transcriptome profiles and mRNA expression of selected cationic amino acid transporters in the livers of broilers fed low and high lysine diets. Birds consumed high-lysine (1.42% lysine) or low-lysine (0.85% lysine) diets while the control group consumed 1.14% lysine diet. These concentrations of lysine represent 125% (high lysine), 75% (low lysine) and 100% (control), respectively, of the National Research Council's (NRC) recommendation for broiler chickens. After comparing the two groups, 210 differentially expressed genes (DEGs) were identified (fold change >1 and false discovery rate (FDR) <0.05). When comparing the high lysine and the low lysine treatments, there were 67 upregulated genes and 143 downregulated genes among these DEGs. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) enrichment analysis show that cellular growth, lipid metabolism and lysine metabolism pathways were among the significantly enriched pathways. This study contributes to a better understanding of the potential molecular mechanisms underlying the correlation between lysine intake, body weight gain (BWG) and feed intake (FI) in broiler chickens. Moreover, the DEGs obtained in this study may be used as potential candidate genes for further investigation of broiler growth customized responses to individualized nutrients such as amino acids.
Collapse
Affiliation(s)
- Collins N. Khwatenge
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA; (C.N.K.); (B.M.K.)
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Boniface M. Kimathi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA; (C.N.K.); (B.M.K.)
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Samuel N. Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
16
|
Xu K, Han CX, Zhou H, Ding JM, Xu Z, Yang LY, He C, Akinyemi F, Zheng YM, Qin C, Luo HX, Meng H. Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. Int J Mol Sci 2020; 21:ijms21072584. [PMID: 32276422 PMCID: PMC7177447 DOI: 10.3390/ijms21072584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle growth and development are important aspects of chicken meat production, but the underlying regulatory mechanisms remain unclear and need further exploration. CRISPR has been used for gene editing to study gene function in mice, but less has been done in chick muscles. To verify whether postnatal gene editing could be achieved in chick muscles and determine the transcriptomic changes, we knocked out Myostatin (MSTN), a potential inhibitor of muscle growth and development, in chicks and performed transcriptome analysis on knock-out (KO) muscles and wild-type (WT) muscles at two post-natal days: 3d (3-day-old) and 14d (14-day-old). Large fragment deletions of MSTN (>5 kb) were achieved in all KO muscles, and the MSTN gene expression was significantly downregulated at 14d. The transcriptomic results indicated the presence of 1339 differentially expressed genes (DEGs) between the 3d KO and 3d WT muscles, as well as 597 DEGs between 14d KO and 14d WT muscles. Many DEGs were found to be related to cell differentiation and proliferation, muscle growth and energy metabolism. This method provides a potential means of postnatal gene editing in chicks, and the results presented here could provide a basis for further investigation of the mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Meng
- Correspondence: ; Tel.: +86-021-34206146
| |
Collapse
|