1
|
Perera NN, Barrow RA, Weston PA, Weston LA, Gurr GM. Field evaluation of electrophysiologically-active dung volatiles as chemical lures for trapping of dung beetles. Sci Rep 2024; 14:584. [PMID: 38182629 PMCID: PMC10770360 DOI: 10.1038/s41598-023-50079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Dung beetles are economically important beneficial insects that process dung. To locate this source, they use volatile organic compounds (VOCs). The objectives of the study were to evaluate the attractiveness of ten electrophysiologically-active dung volatiles (phenol, skatole, indole, p-cresol, butanone, butyric acid, eucalyptol, dimethyl sulphide, dimethyl disulphide, and toluene) to dung beetles in the field and to investigate how the composition of volatile blends influences efficacy as lures for use in traps. Six combinations of the compounds were compared with field collected cattle dung bait and a negative control, across three seasons. Both dung and synthetic baits captured all exotic dung beetle species present in the study area. A six-compound mix (M1), comprising major dung volatiles, served as an attractive chemical mixture. The addition of dimethyl sulphide, dimethyl disulphide (M2) and toluene (M4) enhanced attractancy of M1 for dung beetles, while eucalyptol (M3) decreased the attractancy. The degree of attraction by various dung beetle species to synthetic baits varied, but baits proved to be effective, especially for summer trapping. The trap design used in this study presented a convenient and practical way to sample dung beetle and other associated scarabs from open pastures. The attraction of introduced dung beetle species to synthetic baits is documented here for the first time in Australia. In addition, necrophagous Omorgus sp. is reported here for the first time to be attracted to synthetic baits. They showed a significant attraction to the mixture containing dimethyl sulphide and dimethyl disulphide (M2). The current study represents a promising first step towards formulating a synthetic chemical lure for dung beetles, offering a consistent, standardised, and bio-secure trapping method compared to use of naturally occurring dung baits, especially as a multi-species lure.
Collapse
Affiliation(s)
- Nisansala N Perera
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Russell A Barrow
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Paul A Weston
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Geoff M Gurr
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
2
|
Perera NN, Barrow RA, Weston PA, Rolland V, Hands P, Gurusinghe S, Weston LA, Gurr GM. Characterisation of Antennal Sensilla and Electroantennography Responses of the Dung Beetles Bubas bison, Onitis aygulus and Geotrupes spiniger (Coleoptera: Scarabaeoidea) to Dung Volatile Organic Compounds. INSECTS 2023; 14:627. [PMID: 37504633 PMCID: PMC10380661 DOI: 10.3390/insects14070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Locating sporadically distributed food resources and mate finding are strongly aided by volatile cues for most insects, including dung beetles. However, there is limited information on the olfactory ecology of dung beetles. We conducted a scanning electron microscopy study on the morphology and distribution of the antennal sensilla of three introduced dung beetle species in Australia: Geotrupes spiniger (Coleoptera: Geotrupidae), Bubas bison and Onitis aygulus (Coleoptera: Scarabaeidae). Three main morphological types of antennal sensilla were identified: sensilla trichodea (ST), sensilla basiconica (SB) and sensilla chaetica (SCh). Distinct variations of SB distribution were observed in B. bison and G. spiniger and on different lamellar surfaces in both sexes of all three species. Sexual dimorphism in antennal sensilla distribution or their abundance was not evident. To complement the morphological characterisation of sensilla, electroantennography (EAG) was carried out to construct EAG response profiles of the three species to selected dung volatiles. An initial study revealed that antennae of all species were sensitive to a mix of phenol, skatole, indole, p-cresol, butanone and butyric acid, common components of livestock dung headspace. In addition to these six compounds, dimethyl sulfide, dimethyl disulfide, eucalyptol and toluene were tested for antennal activity. All compounds evoked measurable EAG responses, confirming antennal sensitivity. Geotrupes spiniger exhibited significant responses to all the compounds compared to the control, whereas B. bison and O. aygulus only responded to a subset of compounds. A comparison of relative EAG amplitudes revealed highly significant responses to p-cresol in G. spiniger and to skatole in B. bison. Geotrupes spiniger displayed differential responses to all the compounds. Pooled EAG data suggest highly significant differences in responses among the three species and among compounds. Our findings suggest that a blend of volatiles may offer potential for the trapping of dung beetles, thereby avoiding the use of dung baits that are inconvenient, inconsistent and may pose a threat to farm biosecurity.
Collapse
Affiliation(s)
- Nisansala N Perera
- Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Russell A Barrow
- Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Paul A Weston
- Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Vivien Rolland
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Philip Hands
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Saliya Gurusinghe
- Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Leslie A Weston
- Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Geoff M Gurr
- Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia
| |
Collapse
|
3
|
Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae). Molecules 2022; 27:molecules27134152. [PMID: 35807397 PMCID: PMC9268081 DOI: 10.3390/molecules27134152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Volatile cues can play a significant role in the location and discrimination of food resources by insects. Dung beetles have been reported to discriminate among dung types produced by different species, thereby exhibiting behavioral preferences. However, the role of volatile organic compounds (VOCs) in dung localization and preference remains largely unexplored in dung beetles. Here we performed several studies: firstly, cage olfactometer bioassays were performed to evaluate the behavioral responses of Bubas bison (Coleoptera: Scarabaeidae) to VOCs emanating from fresh horse, sheep, and cattle dung; secondly, concurrent volatilome analysis was performed to characterize volatilomes of these dung types. Bubas bison adults exhibited greater attraction to horse dung and less attraction to cattle dung, and they preferred dung from horses fed a pasture-based diet over dung from those fed lucerne hay. Volatilomes of the corresponding dung samples from each livestock species contained a diverse group of alkanes, alkenes, alkynes, alcohols, aldehydes, ketones, esters, phenols, and sulfurous compounds, but the composition and abundance of annotated VOCs varied with dung type and livestock diet. The volatilome of horse dung was the most chemically diverse. Results from a third study evaluating electroantennogram response and supplementary olfactometry provided strong evidence that indole, butyric acid, butanone, p-cresol, skatole, and phenol, as well as toluene, are involved in the attraction of B. bison to dung, with a mixture of these components significantly more attractive than individual constituents.
Collapse
|
4
|
Radadiya A, Pickett JA. Characterizing human odorant signals: insights from insect semiochemistry and in silico modelling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190263. [PMID: 32306882 DOI: 10.1098/rstb.2019.0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interactions relating to human chemical signalling, although widely acknowledged, are relatively poorly characterized chemically, except for human axillary odour. However, the extensive chemical ecology of insects, involving countless pheromone and other semiochemical identifications, may offer insights into overcoming problems of characterizing human-derived semiochemicals more widely. Current techniques for acquiring insect semiochemicals are discussed, particularly in relation to the need for samples to relate, as closely as possible, to the ecological situation in which they are naturally deployed. Analysis is facilitated by chromatography coupled to electrophysiological preparations from the olfactory organs of insects in vivo. This is not feasible with human olfaction, but there are now potential approaches using molecular genetically reconstructed olfactory preparations already in use with insect systems. There are specific insights of value for characterizing human semiochemicals from advanced studies on semiochemicals of haematophagous insects, which include those involving human hosts, in addition to wider studies on farm and companion animals. The characterization of the precise molecular properties recognized in olfaction could lead to new advances in analogue design and a range of novel semiochemicals for human benefit. There are insights from successful synthetic biology studies on insect semiochemicals using novel biosynthetic precursors. Already, wider opportunities in olfaction emerging from in silico studies, involving a range of theoretical and computational approaches to molecular design and understanding olfactory systems at the molecular level, are showing promise for studying human semiochemistry. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Ashish Radadiya
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - John A Pickett
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
5
|
Identification and Synthesis of Putative Pheromone Components of the Threatened Salt Marsh Bagworm Moth, Whittleia retiella (Lepidoptera: Psychidae). J Chem Ecol 2020; 46:115-127. [PMID: 32056064 PMCID: PMC7056680 DOI: 10.1007/s10886-020-01145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/04/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022]
Abstract
Whittleia retiella (Newman, 1847) is a threatened salt marsh species of the bagworm moth family Psychidae. For its preservation it is necessary to develop efficient tools to survey its distribution and habitat requirements in order to use appropriate conservation methods. Such tools may be pheromone-based monitoring systems, which have documented efficacy in establishing the occurrence of cryptic insect species in nature. By using gas chromatography combined with electroantennographic detection (GC-EAD), we found two compounds in female W. retiella headspace samples and whole-body extracts that elicited electrophysiological activity in male antennae. Gas chromatograpy coupled with mass spectrometry (GC-MS) operating in electron impact (EI) mode and comparison of the analytical data with those of synthetic reference compounds showed the chemical structures of these putative pheromone components to be (1S)-1-methylpropyl (5Z)-dec-5-enoate and 1-methylethyl (5Z)-dec-5-enoate. Field assays using baits loaded with synthetic compounds revealed that conspecific males were attracted to (1S)-1-methylpropyl (5Z)-dec-5-enoate alone or in combination with 1-methylethyl (5Z)-dec-5-enoate, whereas 1-methylethyl (5Z)-dec-5-enoate neither attracted nor repelled males in the field assays when tested alone. This study shows the potential of using (1S)-1-methylpropyl (5Z)-dec-5-enoate for monitoring W. retiella to gather more detailed information about the geographic distribution and habitat needs of this rare moth.
Collapse
|