1
|
Sun J, Hu JR, Liu CF, Li Y, Wang W, Fu R, Guo M, Wang HL, Pang M. ANKRD49 promotes the metastasis of NSCLC via activating JNK-ATF2/c-Jun-MMP-2/9 axis. BMC Cancer 2023; 23:1108. [PMID: 37964204 PMCID: PMC10644579 DOI: 10.1186/s12885-023-11612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Ankyrin repeat domain 49 (ANKRD49) has been found to be highly expressed in multiple cancer including lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). However, the function of ANKRD49 in the pathogenesis of NSCLC still remains elusive. Previously, ANKRD49 has been demonstrated to promote the invasion and metastasis of A549 cells, a LUAD cell line, via activating the p38-ATF-2-MMP2/MMP9 pathways. Considering the heterogeneity of tumor cells, the function and mechanism of ANKRD49 in NSCLC need more NSCLC-originated cells to clarify. METHODS Real-time qPCR was employed to test ANKRD49 expression levels in nine pairs of fresh NSCLC tissues and the corresponding adjacent normal tissues. The function of ANKRD49 was investigated using overexpression and RNA interference assays in lung adenocarcinoma cell line (NCI-H1299) and lung squamous carcinoma cell line (NCI-H1703) through gelatin zymography, cell counting kit-8, colony formation, wound healing, migration and invasion assays mmunoprecipitation was performed to in vitro. Immunoprecipitation was performed to test the interaction of c-Jun and ATF2. Chromatin immunoprecipitation was conducted to assess the transcriptional regulation of ATF2/c-Jun on MMP-2/9. Moreover, the tumorigenicity of ANKRD49 was evaluated in nude mice models and the involved signal molecular was also measured by immunohistochemical method. RESULTS We found that the levels of ANKRD49 in cancerous tissues were higher than those in adjacent normal tissues. in vitro assay showed that ANKRD49 promoted the migration and invasion of NCI-H1299 and NCI-H1703 cells via enhancing the levels of MMP-2 and MMP-9. Furthermore, ANKRD49 elevated phosphorylation of JNK and then activated c-Jun and ATF2 which interact in nucleus to promote the binding of ATF2:c-Jun with the promoter MMP-2 or MMP-9. In vivo assay showed that ANKRD49 promoted lung metastasis of injected-NSCLC cells and the high metastatic rate was positively correlated with the high expression of ANKRD49, MMP-2, MMP-9, p-JNK, p-c-Jun and p-ATF2. CONCLUSION The present study indicated that ANKRD49 accelerated the invasion and metastasis of NSCLC cells via JNK-mediated transcription activation of c-Jun and ATF2 which regulated the expression of MMP-2/MMP-9. The molecular mechanisms of ANKRD49's function is different from those found in A549 cells. The current study is a supplement and improvement to the previous research.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
- Department of Laboratorial Medicine, Changzhi Traditional Chinese Medicine Hospital, Changzhi, 046000, China
| | - Jin-Rui Hu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Chao-Feng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Department of Respiratory Medicine 1, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Wei Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Rong Fu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China
| | - Min Guo
- Laboratory of Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China.
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, Shanxi Province Key Laboratory of Respiratory Disease, the First Hospital, Shanxi Medical University, NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi, 030001, China.
- Department of Pulmonary and Critical Care Medicine, the First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
2
|
Wei H, Wang X, Niu X, Jiao R, Li X, Wang S. miR‑34c‑5p targets Notch1 and suppresses the metastasis and invasion of cervical cancer. Mol Med Rep 2020; 23:120. [PMID: 33300051 PMCID: PMC7751466 DOI: 10.3892/mmr.2020.11759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Micro (mi)RNAs are crucial participants in the progression of cervical cancer (CC). Growing evidence indicates that miRNA (miR)-34c-5p is a pivotal tumor suppressor in numerous types of cancer and its functions in CC require further investigating. The present study demonstrated that there was a decreased level of miR-34c-5p in CC-associated cell lines compared with healthy control samples. It also demonstrated that miR-34c-5p targeted Notch1 and suppressed CC progression. Dual-Luciferase reporter assays verified the targeted relationship of miR-34c-5p and Notch1. The expression of Notch1 in HeLa cells was markedly reduced following miR-34c-5p overexpression and the proliferation, migration and invasion of HeLa cells were reduced although apoptosis was accelerated. However, overexpression of miR-34c-5p was reversed following the addition of Notch1, which supported the finding of the targeted relationship between miR-34c-5p and Notch1. Flow cytometry demonstrated that miR-34c-5p inhibited the proliferation of HeLa cells while accelerating apoptosis. The present study concluded that miR-34c-5p was a tumor suppressor in CC and may be a novel measure for the future treatment of CC.
Collapse
Affiliation(s)
- Huali Wei
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Xiaolan Wang
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Xiumin Niu
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Ruili Jiao
- Department of Gynecology and Obstetrics, Chaoyang District Maternal and Child Health Hospital, Beijing 100020, P.R. China
| | - Xiaojuan Li
- Department of Medical Records and Statistics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Sumei Wang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
3
|
Khaliullin TO, Yanamala N, Newman MS, Kisin ER, Fatkhutdinova LM, Shvedova AA. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicol Appl Pharmacol 2020; 390:114898. [PMID: 31978390 DOI: 10.1016/j.taap.2020.114898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers. We asked if the whole blood transcriptome reflects pathology-specific changes in lung gene expression caused by MWCNT. To answer this question, we performed mRNA sequencing analysis of the whole blood and lung in mice administered MWCNT or vehicle solution via pharyngeal aspiration and sacrificed 56 days later. The pattern of lung mRNA expression as determined using Ingenuity Pathway Analysis (IPA) was indicative of continued inflammation, immune cell trafficking, phagocytosis, and adaptive immune responses. Simultaneously, innate immunity-related transcripts (Plunc, Bpifb1, Reg3g) and cancer-related pathways were downregulated. IPA analysis of the differentially expressed genes in the whole blood suggested increased hematopoiesis, predicted activation of cancer/tumor development pathways, and atopy. There were several common upregulated genes between whole blood and lungs, important for adaptive immune responses: Cxcr1, Cd72, Sharpin, and Slc11a1. Trim24, important for TH2 cell effector function, was downregulated in both datasets. Hla-dqa1 mRNA was upregulated in the lungs and downregulated in the blood, as was Lilrb4, which controls the reactivity of immune response. "Cancer" disease category had opposing activation status in the two datasets, while the only commonality was "Hypersensitivity". Transcriptome changes occurring in the lungs did not produce a completely replicable pattern in whole blood; however, specific systemic responses may be shared between transcriptomic profiles.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Mackenzie S Newman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Elena R Kisin
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Liliya M Fatkhutdinova
- Department of Hygiene and Occupational Medicine, Kazan State Medical University, Kazan, Russia
| | - Anna A Shvedova
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| |
Collapse
|
4
|
Zhang Y, Wang M, Xu X, Liu Y, Xiao C. Matrine promotes apoptosis in SW480 colorectal cancer cells via elevating MIEF1-related mitochondrial division in a manner dependent on LATS2-Hippo pathway. J Cell Physiol 2019; 234:22731-22741. [PMID: 31119752 DOI: 10.1002/jcp.28838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
Matrine, an alkaloid compound isolated from Sophora flavescens Ait, has been shown to exert cancer-killing actions in a variety of tumors; however, its anticancer mechanism in colorectal cancer (CRC) is not clear. The goal of our study was to characterize the anticancer effects and molecular mechanisms of matrine in SW480 CRC cells in vitro. Matrine treatment reduced mitochondrial metabolic function and ATP levels, repressed mitochondrial membrane potential, evoked mitochondrial reactive oxygen species accumulation, and promoted cyt-c-related mitochondrial apoptosis activation. In addition, we found that matrine treatment activated mitochondrial fission through upregulating mitochondrial elongation factor 1 (MIEF1); silencing of MIEF1 prevented matrine-mediated mitochondrial damage and reversed the decrease in SW480 cell viability. Moreover, matrine treatment affected MIEF1 expression via the large tumor suppressor-2 (LATS2)-Hippo axis, and LATS2 deficiency suppressed the anticancer actions exerted by matrine on SW480 cancer cells. In summary, we show for the first time that matrine inhibits SW480 cell survival by activating MIEF1-related mitochondrial division via the LATS2-Hippo pathway. These findings explain the anticancer mechanisms of matrine in CRC and also identify the LATS2-MIEF1 signaling pathway as an effective target for the treatment of CRC.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of General Surgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Meiping Wang
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| | - Xianfeng Xu
- Department of Critical Care Medicine, Changle People's Hospital, Fuzhou, Fujian, China
| | - Yonghong Liu
- Department of General Surgery, First People's Hospital of Yuhang District, Hangzhou, China
| | - Chunhong Xiao
- Department of General Surgery, Fuzhou General Hospital (Dongfang Hospital), Fuzhou, Fujian, China
| |
Collapse
|