1
|
Rešetar Maslov D, Rubić I, Farkaš V, Kuleš J, Beer Ljubić B, Beletić A, Samardžija M, Kovačić M, Jurkić Krsteska G, Mrljak V. Characterization and LC-MS/MS based proteomic analysis of extracellular vesicles separated from blood serum of healthy and dogs naturally infected by Babesia canis. A preliminary study. Vet Parasitol 2024; 328:110188. [PMID: 38653059 DOI: 10.1016/j.vetpar.2024.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Canine babesiosis is a rapidly spreading tick-borne disease in Europe, which entails protozoan parasites invading red blood cells. Small extracellular vesicles (EVs) (< 200 nm) were isolated from the serum of 15 healthy and 15 by Babesia canis naturally infected dogs aimed to distinguish EV characteristics and protein profiles. There were no significant differences (P = 0.05) observed in the mean sizes and concentrations of serum EVs between the healthy and canine babesiosis groups. Despite a higher number of Canis lupus proteins detected in EVs from serum of diseased dogs, there were no statistically significant differences (P < 0.05) in the number of protein IDs between the experimental groups. We successfully identified 211 Canis lupus proteins across both experimental groups, of which 147 Canis lupus proteins were validated as being EV-associated. This data set is accessible via the ProteomeXchange PXD047647. EVs isolated from serum of B. canis infected dogs were Cd9+, Cd63+, Cd81+, and Cd82+. Furthermore, 73 Canis lupus proteins were validated as EV-associated and specific for EVs isolated from serum of B. canis-infected dogs. These were predominantly membrane and cytosolic proteins, and innate and adaptive immune system-related proteins, especially those involved in adhesion and proteoglycan mechanisms like integrins. Enrichment was also observed for proteins involved in vascular and cellular responses, including signalling pathways such as VEGF, VEGFR, and the LKB1 network. When only blood-related sites of EV expression were evaluated, the origins of EV proteins were mostly cells of immune system. These were dendritic cells, neutrophils, B cells, monocytes and platelets. In general, proteins were enriched in pathways that collectively regulate various cellular processes, including immune responses, communication, signal transduction, membrane trafficking, and apoptosis. Serum EVs and their protein cargo may have an important role in both the invasion of B. canis and the host's response to the parasitic infection, nevertheless, additional experimental research is warranted. The overall count of identified EV proteins of parasitic origin, meeting cut off criteria of two peptides and 1 % FDR, was relatively low.
Collapse
Affiliation(s)
- Dina Rešetar Maslov
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia.
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Vladimir Farkaš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia; Ruđer Bošković Insitute, Division of Molecular Medicine, Laboratory of Molecular Neuropsychiatry, Bijenička cesta 54, Zagreb, Croatia
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, Zagreb 10000, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Anđelo Beletić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia; Genos Ltd, Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb 10000, Croatia
| | - Marko Samardžija
- Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Mislav Kovačić
- Department of Biology, University of Osijek, Osijek 31000, Croatia
| | - Gabrijela Jurkić Krsteska
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Vladimir Mrljak
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong S. Phosphoproteomics analysis of serum from dogs affected with pulmonary hypertension secondary to degenerative mitral valve disease. PeerJ 2024; 12:e17186. [PMID: 38708342 PMCID: PMC11067895 DOI: 10.7717/peerj.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Phosphorylation of proteins, impacting vascular function and cell proliferation, might play a role in the development and progression of PH. Unlike gene or protein studies, phosphoproteomic focuses on active proteins that function as end-target proteins within signaling cascades. Studying phosphorylated proteins can reveal active contributors to PH development. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach. Serum samples were collected from healthy control dogs (n = 28), dogs with DMVD (n = 24), and dogs with DMVD and PH (n = 29). Phosphoproteins were enriched from the serum samples and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Data analysis was performed to identify uniquely expressed phosphoproteins in each group and differentially expressed phosphoproteins among groups. Phosphoproteomic analysis revealed nine uniquely expressed phosphoproteins in the serum of dogs in the DMVD+PH group and 15 differentially upregulated phosphoproteins in the DMVD+PH group compared to the DMVD group. The phosphoproteins previously implicated in PH and associated with pulmonary arterial remodeling, including small nuclear ribonucleoprotein G (SNRPG), alpha-2-macroglobulin (A2M), zinc finger and BTB domain containing 42 (ZBTB42), hemopexin (HPX), serotransferrin (TRF) and complement C3 (C3), were focused on. Their unique expression and differential upregulation in the serum of DMVD dogs with PH suggest their potential as biomarkers for PH diagnosis. In conclusion, this phosphoproteomic study identified uniquely expressed and differentially upregulated phosphoproteins in the serum of DMVD dogs with PH. Further studies are warranted to validate the diagnostic utility of these phosphoproteins.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand, Bangkok, Thailand
| | - Sirilak Surachetpong
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, Bangkok, Thailand
| |
Collapse
|
3
|
Doulidis PG, Kuropka B, Frizzo Ramos C, Rodríguez-Rojas A, Burgener IA. Characterization of the plasma proteome from healthy adult dogs. Front Vet Sci 2024; 11:1356318. [PMID: 38638644 PMCID: PMC11024428 DOI: 10.3389/fvets.2024.1356318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Bloodwork is a widely used diagnostic tool in veterinary medicine, as diagnosis and therapeutic interventions often rely on blood biomarkers. However, biomarkers available in veterinary medicine often lack sensitivity or specificity. Mass spectrometry-based proteomics technology has been extensively used in the analysis of biological fluids. It offers excellent potential for a more comprehensive characterization of the plasma proteome in veterinary medicine. Methods In this study, we aimed to identify and quantify plasma proteins in a cohort of healthy dogs and compare two techniques for depleting high-abundance plasma proteins to enable the detection of lower-abundance proteins via label-free quantification liquid chromatography-mass spectrometry. We utilized surplus lithium-heparin plasma from 30 healthy dogs, subdivided into five groups of pooled plasma from 6 randomly selected individuals each. Firstly, we used a commercial kit to deplete high-abundance plasma proteins. Secondly, we employed an in-house method to remove albumin using Blue-Sepharose. Results and discussion Among all the samples, some of the most abundant proteins identified were apolipoprotein A and B, albumin, alpha-2-macroglobulin, fibrinogen beta chain, fibronectin, complement C3, serotransferrin, and coagulation factor V. However, neither of the depletion techniques achieved significant depletion of highly abundant proteins. Despite this limitation, we could detect and quantify many clinically relevant proteins. Determining the healthy canine proteome is a crucial first step in establishing a reference proteome for canine plasma. After enrichment, this reference proteome can later be utilized to identify protein markers associated with different diseases, thereby contributing to the diagnosis and prognosis of various pathologies.
Collapse
Affiliation(s)
- Pavlos G. Doulidis
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Carolina Frizzo Ramos
- The Interuniversity Messerli Research Institute, Medical University Vienna, Vienna, Austria
- Clinical Center for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ahn HS, Yeom J, Yu J, Oh Y, Hong J, Kim M, Kim K. Generating Detailed Spectral Libraries for Canine Proteomes Obtained from Serum and Urine. Sci Data 2023; 10:241. [PMID: 37105983 PMCID: PMC10140049 DOI: 10.1038/s41597-023-02139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Domestic dogs (Canis lupus familiaris) are popular companion animals. Increase in medical expenses associated with them and demand for extending their lifespan in a healthy manner has created the need to develop new diagnostic technology. Companion dogs also serve as important animal models for non-clinical research as they can provide various biological phenotypes. Proteomics have been increasingly used on dogs and humans to identify novel biomarkers of various diseases. Despite the growing applications of proteomics in liquid biopsy in veterinary medicine, no publicly available spectral assay libraries have been created for the proteome of canine serum and urine. In this study, we generated spectral assay libraries for the two-representative liquid-biopsy samples using mid-pH fractionation that allows in-depth understanding of proteome coverage. The resultant canine serum and urine spectral assay libraries include 1,132 and 4,749 protein groups and 5,483 and 25,228 peptides, respectively. We built these complimentary accessible resources for proteomic biomarker discovery studies through ProteomeXchange with the identifier PXD034770.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Prometabio Research Institute, Prometabio co., ltd., Gyeonggi-do, 12939, Republic of Korea
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yumi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - JeongYeon Hong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minjung Kim
- Department of Research and Development, Mjbiogen, Seoul, 04788, Republic of Korea
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
5
|
González-Arostegui LG, Rubio CP, Cerón JJ, Tvarijonaviciute A, Muñoz-Prieto A. Proteomics in dogs: a systematic review. Res Vet Sci 2021; 143:107-114. [PMID: 35007798 DOI: 10.1016/j.rvsc.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Proteomic analysis is having a rapid development as a method for the detection of biomarkers of diseases in dogs. Dogs in addition to their importance as companion animals, serve as important animal models for research. This study aims to systematically review evidence regarding the studies performed in proteomics in dogs, and specifically those made in serum, saliva, urine and/or plasma. Information searched in October 2020, January 2021 and August 2021, for English language publications of the last decade (2010-2020) were obtained from electronic databases. Screening, data extraction and risk of bias assessment were undertaken by two investigators. The risk of bias was evaluated using the Review Manager (RevMan 5) tool. Meta-analysis and case report studies were not included in this review. Through the screening process a total of 557 publications were identified after the removal of duplicates. Out of these, 65 were fully evaluated and 44 of these were included in the review. Most studies evaluated the proteome of disease and compared it with a healthy population, and most of the articles included were made on serum, followed by saliva. The overall risk of bias for all studies was high, due to an absence in the generation of random sequence. Overall proteomic analysis has allowed the discovery of new physiopathological pathways of diseases and potential biomarkers in the dog, which are addressed in this review.
Collapse
Affiliation(s)
- Luis Guillermo González-Arostegui
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain; Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Lüthi SC, Howald A, Nowak K, Graage R, Bartolomei G, Neupert C, Sidler X, Leslie Pedrioli D, Hottiger MO. Establishment of a Mass-Spectrometry-Based Method for the Identification of the In Vivo Whole Blood and Plasma ADP-Ribosylomes. J Proteome Res 2021; 20:3090-3101. [PMID: 34032442 DOI: 10.1021/acs.jproteome.0c00923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood and plasma proteins are heavily investigated as biomarkers for different diseases. However, the post-translational modification states of these proteins are rarely analyzed since blood contains many enzymes that rapidly remove these modifications after sampling. In contrast to the well-described role of protein ADP-ribosylation in cells and organs, its role in blood remains mostly uncharacterized. Here, we discovered that plasma phosphodiesterases and/or ADP-ribosylhydrolases rapidly demodify in vitro ADP-ribosylated proteins. Thus, to identify the in vivo whole blood and plasma ADP-ribosylomes, we established a mass-spectrometry-based workflow that was applied to blood samples collected from LPS-treated pigs (Sus scrofa domesticus), which serves as a model for human systemic inflammatory response syndrome. These analyses identified 60 ADP-ribosylated proteins, 17 of which were ADP-ribosylated plasma proteins. This new protocol provides an important step forward for the rapidly developing field of ADP-ribosylation and defines the blood and plasma ADP-ribosylomes under both healthy and disease conditions.
Collapse
Affiliation(s)
- Stephanie C Lüthi
- Department of Molecular Mechanisms of Disease, Vetsuisse Faculty and Faculty of Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Anna Howald
- Department of Molecular Mechanisms of Disease, Vetsuisse Faculty and Faculty of Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, Vetsuisse Faculty and Faculty of Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Robert Graage
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | | | | | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland
| | - Deena Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, Vetsuisse Faculty and Faculty of Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, Vetsuisse Faculty and Faculty of Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
7
|
Muñoz-Prieto A, Escribano D, Contreras-Aguilar MD, Horvatić A, Guillemin N, Jacobsen S, Cerón JJ, Mrljak V. Tandem Mass Tag (TMT) Proteomic Analysis of Saliva in Horses with Acute Abdominal Disease. Animals (Basel) 2021; 11:ani11051304. [PMID: 33946607 PMCID: PMC8147179 DOI: 10.3390/ani11051304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study shows for the first time the variation of the salivary proteome in horses with acute abdominal disease (AAD) compared with healthy horses through a high-throughput proteomic approach. A total of 118 proteins were identified, and 17 showed significant changes between the two groups. The changes observed in proteins were closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa, and one salivary protein (lactoferrin) was successfully verified. These results may increase the background and knowledge of saliva composition in horses with AAD and further understanding of the physiopathological changes occurring in the organism in this disease. Abstract The aim of this study was to investigate the changes in the salivary proteome in horses with acute abdominal disease (AAD) using a tandem mass tags (TMT)-based proteomic approach. The saliva samples from eight horses with AAD were compared with six healthy horses in the proteomic study. Additionally, saliva samples from eight horses with AAD and eight controls were used to validate lactoferrin (LF) in saliva. The TMT analysis quantified 118 proteins. Of these, 17 differed significantly between horses with AAD and the healthy controls, 11 being downregulated and 6 upregulated. Our results showed the downregulation of gamma-enteric smooth muscle actin (ACTA2), latherin isoform X1, and LF. These proteins could be closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa. In addition, there was an upregulation of mucin 19 (MUC19) and the serine protease inhibitor Kazal-type 5 (SPINK5) associated with a protective effect during inflammation. The proteins identified in our study could have the potential to be novel biomarkers for diagnosis or monitoring the physiopathology of the disease, especially LF, which decreased in the saliva of horses with AAD and was successfully measured using a commercially available immunoassay.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
| | - Anita Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia;
| | - Nicolas Guillemin
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Veterinary School of Medicine, Sektion Medicine and Surgery, University of Copenhagen, Hoejbakkegaard Allé 5, DK-2630 Taastrup, Denmark;
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
- Correspondence:
| | - Vladimir Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| |
Collapse
|
8
|
Muñoz-Prieto A, Escribano D, Horvatić A, Contreras-Aguilar MD, Bernal L, Rubić I, Cerón JJ, Dąbrowski R, Mrljak V. Changes in salivary proteins can reflect beneficial physiological effects of ejaculation in the dog. Theriogenology 2021; 164:51-57. [PMID: 33550091 DOI: 10.1016/j.theriogenology.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The objective of this study was to study the changes in salivary proteins that occur in the dog after the ejaculation process. Saliva samples from eight dogs before and after induced ejaculation were analyzed by proteomic using Tandem Mass Tag (TMT) labeling and LC-MS/MS analysis. A total of 33 salivary proteins showed significant changes after the ejaculation process. The up-regulated proteins that showed changes of higher magnitude were mucin-7 (MUC-7), peroxiredoxin-4 (PRDX4) and galectin-3 (LEGALS3) whereas proteins such as alpha-1-acid glycoprotein (A1G1) and alpha-1B-glycoprotein (A1BG) were the most down-regulated. MUC-7 and PRDX4 expression in saliva after ejaculation could be associated with the protective "environment" created by the organism to exert pr 3o-fertility activities and antioxidants benefits in spermatozoa. Also LEGALS3 increment could be associated with an improvement of wellbeing and could contribute to a positive global effect in the body. Down-regulations of A1G1 and A1GB proteins found in saliva after ejaculation could be associated with a reduction in systemic inflammation. Overall it can be concluded that, changes in proteins in saliva that are produced after ejaculation can reflect a state of increase immune defenses, improvement of antioxidant status and low inflammation.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Anita Horvatić
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Bernal
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Ivana Rubić
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Gleboka St., 20-612, Lublin, Poland.
| | - Vladimir Mrljak
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| |
Collapse
|
9
|
de Pontes LG, Altei WF, Galan A, Bilić P, Guillemin N, Kuleš J, Horvatić A, Ribeiro LNDM, de Paula E, Pereira VBR, Lucheis SB, Mrljak V, Eckersall PD, Ferreira RS, Dos Santos LD. Extracellular vesicles in infectious diseases caused by protozoan parasites in buffaloes. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190067. [PMID: 32528536 PMCID: PMC7262785 DOI: 10.1590/1678-9199-jvatitd-2019-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
Background Extracellular vesicles (EVs) are small membrane-bound vesicles of growing interest in vetetinary parasitology. The aim of the present report was to provide the first isolation, quantification and protein characterization of EVs from buffalo (Bubalus bubalis) sera infected with Theileria spp. Methods Infected animals were identified through optical microscopy and PCR. EVs were isolated from buffalo sera by size-exclusion chromatography and characterized using western blotting analysis, nanoparticle tracking analysis and transmission electron microscopy. Subsequently, the proteins from isolated vesicles were characterized by mass spectrometry. Results EVs from buffalo sera have shown sizes in the 124-140 nm range and 306 proteins were characterized. The protein-protein interaction analysis has evidenced biological processes and molecular function associated with signal transduction, binding, regulation of metabolic processes, transport, catalytic activity and response to acute stress. Five proteins have been shown to be differentially expressed between the control group and that infected with Theileria spp., all acting in the oxidative stress pathway. Conclusions EVs from buffaloes infected with Theileria spp. were successfully isolated and characterized. This is an advance in the knowledge of host-parasite relationship that contributes to the understanding of host immune response and theileriosis evasion mechanisms. These findings may pave the way for searching new EVs candidate-markers for a better production of safe biological products derived from buffaloes.
Collapse
Affiliation(s)
- Leticia Gomes de Pontes
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wanessa Fernanda Altei
- Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Asier Galan
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Petra Bilić
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicolas Guillemin
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Josipa Kuleš
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Horvatić
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Lígia Nunes de Morais Ribeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Vladimir Mrljak
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter David Eckersall
- ERA Chair Team (VetMedZg), Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom, UK
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|