1
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
2
|
Yang H, Chen Y, Rahman SU, Wang Y, Ni S, Jiang Y, Zhu F, Li D, Cao Q, Chang J, Wen Y, Chen D, Wentao M. Characterization and epidemiologic analysis of mycoplasmal pneumonia of sheep in Qinghai Province. PLoS One 2024; 19:e0299928. [PMID: 38771810 PMCID: PMC11108190 DOI: 10.1371/journal.pone.0299928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 05/23/2024] Open
Abstract
Mycoplasmal pneumonia in sheep and goats usually result covert but huge economic losses in the sheep and goat industry. The disease is prevalent in various countries in Africa and Asia. Clinical manifestations in affected animals include anorexia, fever, and respiratory symptoms such as dyspnea, polypnea, cough, and nasal discharge. Due to similarities with other respiratory infections, accurate diagnosis can be challenging, and isolating the causative organism is often problematic. However, the utilization of molecular techniques, such as PCR, allows for rapid and specific identification of pathogens. Thus, a goat infection model with Mycoplasma was established and the pathogen was tested using PCR. The results indicated that this approach could be effectively utilized for the rapid detection of mycoplasma in clinical settings. Additionally, the prevalence of contagious pleuropneumonia of sheep in Qinghai Province was further investigated through PCR analysis. A total of 340 nasal swabs were collected from 17 sheep farms in Qinghai province. Among these samples, 84 tested positive for Mycoplasma mycoides subsp. capri (Mmc) and 148 tested positive for Mycoplasma ovipneumoniae (Movi), resulting in positive rates of 24.71% and 43.53% respectively. Furthermore, our investigation revealed positive PCR results for nasal swabs, trachea, and lung samples obtained from sheep exhibiting symptoms suggestive of mycoplasma infection. Moreover, three distinct strains were isolated from these positive samples. Additionally, the inflammatory cytokines of peripheral blood mononuclear cells (PBMCs) were assessed using RT-PCR. The findings demonstrated a high susceptibility of sheep to Movi in Qinghai province, with infected sheep displaying an inflammatory response. Consequently, the outcomes of this study will furnish valuable epidemiological insights for the effective prevention and control of this disease within Qinghai Province.
Collapse
Affiliation(s)
- Haoyue Yang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Yiming Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | - Yunpeng Wang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Silu Ni
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Yuecai Jiang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Fang Zhu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Dengliang Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Qihang Cao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, China
| | - Ying Wen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Ma Wentao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| |
Collapse
|
3
|
Chen J, Wang S, Dong D, Zhang Z, Huang Y, Zhang Y. Isolation and Characterization of Mycoplasma ovipneumoniae Infecting Goats with Pneumonia in Anhui Province, China. Life (Basel) 2024; 14:218. [PMID: 38398727 PMCID: PMC10890177 DOI: 10.3390/life14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) causes a fatal infection in goats, leading to significant economic losses in the small-ruminant industry worldwide. The present study aimed to characterize the strains of M. ovipneumoniae infecting goats with pneumonia in Anhui Province, China. From November 2021 to January 2023, among 20 flocks, a total of 1320 samples (600 samples of unvaccinated blood, 400 nasal swabs, 200 samples of pleural fluid, and 120 samples of lung tissue) were obtained from goats with typical signs of pneumonia, such as a low growth rate, appetite suppression, increased temperature, discharge from the nose, and a cough. Necropsied goats showed increased pleural fluid, fibrinous pleuropneumonia, and attached localized pleural adhesions. M. ovipneumoniae isolated from the samples were subjected to an indirect hemagglutination test (IHA), PCR amplicon sequencing, phylogenetic analysis, and biochemical identification tests. The overall positivity rate of M. ovipneumoniae was 27.50%. Mycoplasmas were obtained from 80 (20.0%) nasal swabs, 21 (10.5%) pleural fluid samples, and 15 (12.5%) lung samples. PCR amplicon (288 bp) sequencing identified eight strains of M. ovipneumoniae. In a phylogenetic tree, the isolated strains were homologous to the standard strain M. ovipneumoniae Y-98 and most similar to M. ovipneumoniae FJ-SM. Local strains of M. ovipneumoniae were isolated from goats in Anhui province. The identified genomic features and population structure will promote further study of M. ovipneumoniae pathogenesis and could form the basis for vaccine and therapy development.
Collapse
Affiliation(s)
- Jiahong Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
| | - Dong Dong
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
4
|
Magnusson K, Harms NJ, Thompson M. Antibiotic treatment of Mycoplasma ovipneumoniae in domestic sheep (Ovis aries): Working at the livestock-wildlife interface in Yukon, Canada. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:1114-1118. [PMID: 38046428 PMCID: PMC10637703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Domestic sheep (Ovis aries) can carry the bacterium Mycoplasma ovipneumoniae (M. ovipneumoniae) in their upper respiratory tract, often with little effect on health and productivity. However, for bighorn sheep (Ovis canadensis) populations, there is a link between M. ovipneumoniae infection and pneumonia, poor lamb recruitment, and high fatality rate. Because of these outcomes, preventing transmission of M. ovipneumoniae to free-ranging wild sheep has garnered interest from both the livestock and wildlife sectors. We hypothesized that treatment with intranasal and systemic enrofloxacin would reduce the prevalence of M. ovipneumoniae-positive animals in a flock of domestic sheep. Initially, the prevalence decreased in the treated group; but by 34 d post-treatment, the number of M. ovipneumoniae-positive sheep returned to near pretreatment prevalence. Key clinical message: Test-and-slaughter is a method used to reduce the risk of transmission of pneumonia-causing M. ovipneumoniae from domestic sheep and goats to free-ranging wild sheep. In an effort to find an alternative, we used enrofloxacin to treat a flock of M. ovipneumoniae-positive domestic sheep; however, long-term reduction of M. ovipneumoniae prevalence in the flock was not achieved.
Collapse
Affiliation(s)
- Kristenn Magnusson
- Animal Health Unit, Department of Environment, Government of Yukon, 10 Burns Road, Whitehorse, Yukon Y1A 4Y9
| | - N Jane Harms
- Animal Health Unit, Department of Environment, Government of Yukon, 10 Burns Road, Whitehorse, Yukon Y1A 4Y9
| | - Michelle Thompson
- Animal Health Unit, Department of Environment, Government of Yukon, 10 Burns Road, Whitehorse, Yukon Y1A 4Y9
| |
Collapse
|
5
|
The trehalose glycolipid C18Brar promotes antibody and T-cell immune responses to Mannheimia haemolytica and Mycoplasma ovipneumoniae whole cell antigens in sheep. PLoS One 2023; 18:e0278853. [PMID: 36656850 PMCID: PMC9851559 DOI: 10.1371/journal.pone.0278853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023] Open
Abstract
Bronchopneumonia is a common respiratory disease in livestock. Mannheimia haemolytica is considered the main causative pathogen leading to lung damage in sheep, with Mycoplasma ovipneumoniae and ParaInfluenza virus type 3, combined with adverse physical and physiological stress, being predisposing factors. A balance of humoral and cellular immunity is thought to be important for protection against developing respiratory disease. In the current study, we compared the ability of the trehalose glycolipid adjuvant C18Brar (C18-alkylated brartemicin analogue) and three commercially available adjuvant systems i.e., Quil-A, Emulsigen-D, and a combination of Quil-A and aluminium hydroxide gel, to stimulate antibody and cellular immune responses to antigens from inactivated whole cells of M. haemolytica and M. ovipneumoniae in sheep. C18Brar and Emulsigen-D induced the strongest antigen-specific antibody responses to both M. haemolytica and M. ovipneumoniae, while C18Brar and Quil-A promoted the strongest antigen-specific IL-17A responses. The expression of genes with known immune functions was determined in antigen-stimulated blood cultures using Nanostring nCounter technology. The expression levels of CD40, IL22, TGFB1, and IL2RA were upregulated in antigen-stimulated blood cultures from animals vaccinated with C18Brar, which is consistent with T-cell activation. Collectively, the results demonstrate that C18Brar can promote both antibody and cellular responses, notably Th17 immune responses in a ruminant species.
Collapse
|
6
|
Mycoplasma ovipneumoniae: A Most Variable Pathogen. Pathogens 2022; 11:pathogens11121477. [PMID: 36558811 PMCID: PMC9781387 DOI: 10.3390/pathogens11121477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae, a well-established respiratory pathogen of sheep and goats, has gained increased importance recently because of its detection in wild ruminants including members of the Cervidae family. Despite its frequent isolation from apparently healthy animals, it is responsible for outbreaks of severe respiratory disease which are often linked to infections with multiple heterologous strains. Furthermore, M. ovipneumoniae is characterized by an unusually wide host range, a high degree of phenotypic, biochemical, and genomic heterogeneity, and variable and limited growth in mycoplasma media. A number of mechanisms have been proposed for its pathogenicity, including the production of hydrogen peroxide, reactive oxygen species production, and toxins. It shows wide metabolic activity in vitro, being able to utilize substrates such as glucose, pyruvate, and isopropanol; these patterns can be used to differentiate strains. Treatment of infections in the field is complicated by large variations in the susceptibility of strains to antimicrobials, with many showing high minimum inhibitory concentrations. The lack of commercially available vaccines is probably due to the high cost of developing vaccines for diseases in small ruminants not presently seen as high priority. Multiple strains found in affected sheep and goats may also hamper the development of effective vaccines. This review summarizes the current knowledge and identifies gaps in research on M. ovipneumoniae, including its epidemiology in sheep and goats, pathology and clinical presentation, infection in wild ruminants, virulence factors, metabolism, comparative genomics, genotypic variability, phenotypic variability, evolutionary mechanisms, isolation and culture, detection and identification, antimicrobial susceptibility, variations in antimicrobial susceptibility profiles, vaccines, and control.
Collapse
|
7
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
8
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Johnson T, Jones K, Jacobson BT, Schearer J, Adams N, Thornton I, Mosdal C, Jones S, Jutila M, Rynda-Apple A, Besser T, Bimczok D. Experimental infection of specific-pathogen-free domestic lambs with Mycoplasma ovipneumoniae causes asymptomatic colonization of the upper airways that is resistant to antibiotic treatment. Vet Microbiol 2022; 265:109334. [PMID: 35033769 PMCID: PMC9109813 DOI: 10.1016/j.vetmic.2022.109334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/03/2023]
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a respiratory pathogen associated with mild to moderate respiratory disease in domestic lambs and severe pneumonia outbreaks in wild ruminants such as bighorn sheep. However, whether M. ovipneumoniae by itself causes clinical respiratory disease in domestic sheep in the absence of secondary bacterial pathogens is still unclear. The goal of our study was to better understand the role of M. ovipneumoniae as a respiratory pathogen in domestic sheep and to explore potential antibiotic treatment approaches. Therefore, we inoculated four 4-month-old, specific-pathogen-free lambs with fresh nasal wash fluids from M. ovipneumoniae-infected sheep. The lambs were monitored for M. ovipneumoniae colonization, M. ovipneumoniae-specific antibodies, clinical signs, and cellular and molecular correlates of lung inflammation for eight weeks. All lambs then were treated with gamithromycin and observed for an additional four weeks. M. ovipneumoniae inoculation resulted in stable colonization of the upper respiratory tract in all M. ovipneumoniae-inoculated, but in none of the four mock-infected control lambs. All M. ovipneumoniae-infected lambs developed a robust antibody response to M. ovipneumoniae within 2 weeks. However, we did not observe significant signs of respiratory disease, evidence of lung damage or inflammation in any of the infected lambs. Interestingly, treatment with gamithromycin, which blocked growth of the M. ovipneumoniae in vitro, failed to reduce M. ovipneumoniae colonization. These observations indicate that, in the absence of co-infections, M. ovipneumoniae caused asymptomatic colonization of the upper respiratory tract that was resistant to clearance by the host immune response and by gamithromycin treatment.
Collapse
Affiliation(s)
- Thea Johnson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - B Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Julia Schearer
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Noah Adams
- Chemical and Biological Engineering Department, Montana State University, USA
| | - Isaak Thornton
- Department of Mechanical and Industrial Engineering, Montana State University, USA
| | - Cassie Mosdal
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Steven Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Thomas Besser
- Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99164-7040, USA
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA.
| |
Collapse
|
10
|
Almberg ES, Manlove KR, Cassirer EF, Ramsey J, Carson K, Gude J, Plowright RK. Modelling management strategies for chronic disease in wildlife: Predictions for the control of respiratory disease in bighorn sheep. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kezia R. Manlove
- Department of Wildland Resources & Ecology Center Utah State University Logan UT USA
| | | | | | - Keri Carson
- Montana Fish, Wildlife, and Parks Bozeman MT USA
| | - Justin Gude
- Montana Fish, Wildlife, and Parks Bozeman MT USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology Montana State University Bozeman MT USA
| |
Collapse
|
11
|
Deeney AS, Collins R, Ridley AM. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005-2019. BMC Vet Res 2021; 17:325. [PMID: 34641885 PMCID: PMC8513359 DOI: 10.1186/s12917-021-03037-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mycoplasma species have been associated with economically important diseases affecting ruminants worldwide and include contagious bovine pleuropneumonia (CBPP), contagious caprine pleuropneumonia (CCPP) and contagious agalactia, listed by the World Organisation for Animal Health (OIE). The Mycoplasma Team at the Animal and Plant Health Agency provides an identification service for Mycoplasma and Ureaplasma species of veterinary importance to the United Kingdom (UK), supporting the detection of new and emerging pathogens, as well as contributing to the surveillance of endemic, and the OIE listed diseases exotic to the UK. Mycoplasma and other Mollicutes species were identified from diagnostic samples from farmed ruminants in England and Wales using a combination of culture and 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis, submitted between 2005 and 2019. Results A total of 5578 mollicutes identifications, which include mycoplasmas and the related acholeoplasmas and ureaplasmas, were made from farmed ruminant animals during the study period. Throughout the study period, the pathogen Mycoplasma bovis was consistently the most frequently identified species, accounting for 1411 (32%) of 4447 molecular identifications in cattle, primarily detected in the lungs of pneumonic calves, followed by joints and milk of cattle showing signs of arthritis and mastitis, respectively. M. bovirhinis, M. alkalescens, M. dispar, M. arginini and Ureaplasma diversum, were also common. Mixed species, principally M. bovis with M. alkalescens, M. arginini or M. bovirhinis were also prevalent, particularly from respiratory samples. The non-cultivable blood-borne haemoplasmas Candidatus ‘Mycoplasma haemobos’ and Mycoplasma wenyonii were identified from cattle, with the latter species most often associated with milk-drop. M. ovipneumoniae was the predominant species identified from sheep and goats experiencing respiratory disease, while M. conjunctivae preponderated in ocular samples. The UK remains free of the ruminant mycoplasmas listed by OIE. Conclusions The continued high prevalence of M. bovis identifications confirms its ongoing dominance and importance as a significant pathogen of cattle in England and Wales, particularly in association with respiratory disease. M. ovipneumoniae has seen a general increase in prevalence in recent years, notably in coughing lambs and should therefore be considered as a primary differential diagnosis of respiratory disease in small ruminants.
Collapse
Affiliation(s)
- Alannah S Deeney
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK.
| | - Rachael Collins
- Animal and Plant Health Agency Veterinary Investigation Centre, Starcross, Exeter, UK
| | - Anne M Ridley
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| |
Collapse
|
12
|
Grossman PC, Schneider DA, Herndon DR, Knowles DP, Highland MA. Differential pulmonary immunopathology of domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) with Mycoplasma ovipneumoniae infection: A retrospective study. Comp Immunol Microbiol Infect Dis 2021; 76:101641. [PMID: 33689940 DOI: 10.1016/j.cimid.2021.101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Mycoplasma ovipneumoniae is a respiratory pathogen that impacts domestic sheep (Ovis aries; DS) and bighorn sheep (Ovis canadensis; BHS). BHS are reported to be more susceptible than DS to developing polymicrobial pneumonia associated with M. ovipneumoniae infection. Using formalin-fixed paraffin-embedded tissues, we performed a retrospective study investigating the pulmonary immune response of DS and BHS to M. ovipneumoniae infection. M. ovipneumoniae infected DS exhibited a more robust and well-organized BALT formation as compared to BHS. Digital analysis of immunohistochemical chromogen deposition in lung tissue was used to quantitate T cell marker CD3, B cell markers CD20 and CD79a, macrophage markers CD163 and Iba1, and cytokine IL-17. A significant interaction of species and infection status was identified for CD3, CD163, and IL-17. BHS had a greater increase in bronchiolar CD3 and bronchiolar and alveolar CD163 with infection, as compared to DS. BHS had an increase in bronchiolar associated lymph tissue (BALT) and alveolar IL-17 with infection, while these remained similar in DS regardless of infection status. IL-17 in respiratory epithelium of bronchi and bronchioles comparatively decreased in DS and increased in BHS with infection. These data begin to define the interspecies differential immune response to pulmonary M. ovipneumoniae infection in DS and BHS and provide the first investigations of respiratory epithelium-associated IL-17 in ovine.
Collapse
Affiliation(s)
- Paige C Grossman
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - David R Herndon
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - Margaret A Highland
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA.
| |
Collapse
|
13
|
Spaan RS, Epps CW, Crowhurst R, Whittaker D, Cox M, Duarte A. Impact of Mycoplasma ovipneumoniae on juvenile bighorn sheep ( Ovis canadensis) survival in the northern Basin and Range ecosystem. PeerJ 2021; 9:e10710. [PMID: 33552728 PMCID: PMC7821761 DOI: 10.7717/peerj.10710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Determining the demographic impacts of wildlife disease is complex because extrinsic and intrinsic drivers of survival, reproduction, body condition, and other factors that may interact with disease vary widely. Mycoplasma ovipneumoniae infection has been linked to persistent mortality in juvenile bighorn sheep (Ovis canadensis), although mortality appears to vary widely across subspecies, populations, and outbreaks. Hypotheses for that variation range from interactions with nutrition, population density, genetic variation in the pathogen, genetic variation in the host, and other factors. We investigated factors related to survival of juvenile bighorn sheep in reestablished populations in the northern Basin and Range ecosystem, managed as the formerly-recognized California subspecies (hereafter, "California lineage"). We investigated whether survival probability of 4-month juveniles would vary by (1) presence of M. ovipneumoniae-infected or exposed individuals in populations, (2) population genetic diversity, and (3) an index of forage suitability. We monitored 121 juveniles across a 3-year period in 13 populations in southeastern Oregon and northern Nevada. We observed each juvenile and GPS-collared mother semi-monthly and established 4-month capture histories for the juvenile to estimate survival. All collared adult females were PCR-tested at least once for M. ovipneumoniae infection. The presence of M. ovipneumoniae-infected juveniles was determined by observing juvenile behavior and PCR-testing dead juveniles. We used a known-fate model with different time effects to determine if the probability of survival to 4 months varied temporally or was influenced by disease or other factors. We detected dead juveniles infected with M. ovipneumoniae in only two populations. Derived juvenile survival probability at four months in populations where infected juveniles were not detected was more than 20 times higher. Detection of infected adults or adults with antibody levels suggesting prior exposure was less predictive of juvenile survival. Survival varied temporally but was not strongly influenced by population genetic diversity or nutrition, although genetic diversity within most study area populations was very low. We conclude that the presence of M. ovipneumoniae can cause extremely low juvenile survival probability in translocated bighorn populations of the California lineage, but found little influence that genetic diversity or nutrition affect juvenile survival. Yet, after the PCR+ adult female in one population died, subsequent observations found 11 of 14 ( 79%) collared adult females had surviving juveniles at 4-months, suggesting that targeted removals of infected adults should be evaluated as a management strategy.
Collapse
Affiliation(s)
- Robert S. Spaan
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Clinton W. Epps
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Rachel Crowhurst
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Donald Whittaker
- Oregon Department of Fish and Wildlife, Salem, OR, United States of America
| | - Mike Cox
- Nevada Department of Wildlife, Reno, NV, United States of America
| | - Adam Duarte
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
- Pacific Northwest Research Station, USDA Forest Service, Olympia, WA, United States of America
| |
Collapse
|
14
|
Jaÿ M, Ambroset C, Tricot A, Colin A, Tardy F. Population structure and antimicrobial susceptibility of Mycoplasma ovipneumoniae isolates in France. Vet Microbiol 2020; 248:108828. [PMID: 32905961 DOI: 10.1016/j.vetmic.2020.108828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Chronic non-progressive pneumonia in small ruminants caused by Mycoplasma (M.) ovipneumoniae is mainly controlled by chemotherapy. In France, during the last decade, a rise in M. ovipneumoniae cases was recorded in both sheep and goats, suggesting a possible emergence. Whether this rise is associated with antimicrobial resistance, as observed in other ruminant Mycoplasma species, has yet to be examined. The aim of the study was to characterize the diversity of M. ovipneumoniae strains circulating in France and assess their antimicrobial resistance, together with the underlying mechanisms, to help find an explanation for the increase in reported cases. The genetic diversity of 56 strains isolated between 2007 and 2018 from sheep and goats was assessed using different subtyping methods. Their susceptibility to six antimicrobial classes was profiled by estimating Minimum Inhibitory Concentrations (MICs) using an optimised agar dilution method. Resistance mechanisms were explored by sequence analysis of rRNA targets. A high genetic diversity of strains was evidenced, with consistent, marked animal-host clustering in the Hsp70 gene and whole genome sequence phylogeny. No clonal evolution could thus account for putative emergence. Apart from florfenicol, MICs were low except for a few isolates with increased values for tetracyclines, macrolides and lincosamides. Hotspot mutations in the target ribosomal gene could explain increased tetracycline MICs. Other mechanisms are suspected for macrolide-lincosamide and florfenicol resistance. The emergence of M. ovipneumoniae is thus not related to any increase in resistance or to a clonal spread. Explanations may lie in breeding practices.
Collapse
Affiliation(s)
- Maryne Jaÿ
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Chloé Ambroset
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Agnès Tricot
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Adélie Colin
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Florence Tardy
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France.
| |
Collapse
|
15
|
Lima E, Lovatt F, Green M, Roden J, Davies P, Kaler J. Sustainable lamb production: Evaluation of factors affecting lamb growth using hierarchical, cross classified and multiple memberships models. Prev Vet Med 2019; 174:104822. [PMID: 31751855 DOI: 10.1016/j.prevetmed.2019.104822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
In light of current concerns about the sustainability of red meat production in a world with increasing global demand for food from animal origin there is a need for a better understanding of factors that influence the growth rate and feed conversion efficiency of animals on commercial farms. The primary objective of this observational study was to use longitudinal data to quantify the simultaneous effects of multiple ewe and lamb factors on lamb growth rate. A secondary aim was to evaluate model structures that specifically account for lamb grouping effects during the growth period and compare these to classical hierarchical growth rate models. A total of 4172 weight recordings from 805 lambs and data on disease events were collected over a 6-month period from a commercial pedigree sheep flock. Three mixed model structures were compared, hierarchical, cross classified and multiple membership, and final estimates determined within a Bayesian framework. The multiple membership structure provided the best model fit and was used for final inference; taking account of the effect of lamb grouping over time provided the best estimates of lamb growth rate. Ewe lameness and mastitis cases had a deleterious impact on lamb growth. Lambs from ewes identified with mastitis during lactation were on average 3.0 (standard error (SE) 1.6) kg lighter during the four month growth period than lambs from unaffected ewes. Lambs from ewes that were not lame during pregnancy were 3.0 (SE 1.2) kg heavier at eight weeks of age than lambs from ewes with a least one lameness case during the same period. Lambs from ewes lame either during the first 4 weeks or between 4-8 weeks of a lamb's life (but not lame during pregnancy) were also significantly heavier at 56 days of age, than lambs reared by ewes that were lame during pregnancy (2.8 (SE 1.2) and 3.4 (SE 1.2) kg respectively). Cases of pneumonia and bacterial arthritis in lambs had a significant negative impact on lamb growth with affected lambs being on average 5.5 (SE 1.1) kg and 2.2 (SE 1.2) kg less than non-affected lambs respectively after the disease event. Prior to a case of lameness or pneumonia, lambs were significantly heavier than unaffected lambs suggesting a possible trade-off between growth and immune function. Overall, the study provides evidence that that a combination of ewe and lamb characteristics and disease events play an important role in determining lamb growth rate and that heavier lambs may be more susceptible to disease.
Collapse
Affiliation(s)
- Eliana Lima
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom.
| | - Fiona Lovatt
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Martin Green
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Janet Roden
- Innovis® Ltd, Peithyll, Capel Dewi, Aberystwyth, SY23 3HU, United Kingdom
| | - Peers Davies
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Jasmeet Kaler
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| |
Collapse
|