1
|
Haus ES, Drengstig T, Thorsen K. Structural identifiability of biomolecular controller motifs with and without flow measurements as model output. PLoS Comput Biol 2023; 19:e1011398. [PMID: 37639454 PMCID: PMC10491402 DOI: 10.1371/journal.pcbi.1011398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/08/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Controller motifs are simple biomolecular reaction networks with negative feedback. They can explain how regulatory function is achieved and are often used as building blocks in mathematical models of biological systems. In this paper we perform an extensive investigation into structural identifiability of controller motifs, specifically the so-called basic and antithetic controller motifs. Structural identifiability analysis is a useful tool in the creation and evaluation of mathematical models: it can be used to ensure that model parameters can be determined uniquely and to examine which measurements are necessary for this purpose. This is especially useful for biological models where parameter estimation can be difficult due to limited availability of measureable outputs. Our aim with this work is to investigate how structural identifiability is affected by controller motif complexity and choice of measurements. To increase the number of potential outputs we propose two methods for including flow measurements and show how this affects structural identifiability in combination with, or in the absence of, concentration measurements. In our investigation, we analyze 128 different controller motif structures using a combination of flow and/or concentration measurements, giving a total of 3648 instances. Among all instances, 34% of the measurement combinations provided structural identifiability. Our main findings for the controller motifs include: i) a single measurement is insufficient for structural identifiability, ii) measurements related to different chemical species are necessary for structural identifiability. Applying these findings result in a reduced subset of 1568 instances, where 80% are structurally identifiable, and more complex/interconnected motifs appear easier to structurally identify. The model structures we have investigated are commonly used in models of biological systems, and our results demonstrate how different model structures and measurement combinations affect structural identifiability of controller motifs.
Collapse
Affiliation(s)
- Eivind S. Haus
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| |
Collapse
|
2
|
Kinetics and mechanisms of catalyzed dual-E (antithetic) controllers. PLoS One 2022; 17:e0262371. [PMID: 35980978 PMCID: PMC9387869 DOI: 10.1371/journal.pone.0262371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/02/2022] [Indexed: 01/26/2023] Open
Abstract
Homeostasis plays a central role in our understanding how cells and organisms are able to oppose environmental disturbances and thereby maintain an internal stability. During the last two decades there has been an increased interest in using control engineering methods, especially integral control, in the analysis and design of homeostatic networks. Several reaction kinetic mechanisms have been discovered which lead to integral control. In two of them integral control is achieved, either by the removal of a single control species E by zero-order kinetics (“single-E controllers”), or by the removal of two control species by second-order kinetics (“antithetic or dual-E control”). In this paper we show results when the control species E1 and E2 in antithetic control are removed enzymatically by ping-pong or ternary-complex mechanisms. Our findings show that enzyme-catalyzed dual-E controllers can work in two control modes. In one mode, one of the two control species is active, but requires zero-order kinetics in its removal. In the other mode, both controller species are active and both are removed enzymatically. Conditions for the two control modes are put forward and biochemical examples with the structure of enzyme-catalyzed dual-E controllers are discussed.
Collapse
|
3
|
Joshi DM, Patel J, Bhatt H. Robust adaptation of PKC ζ-IRS1 insulin signaling pathways through integral feedback control. Biomed Phys Eng Express 2021; 7. [PMID: 34315137 DOI: 10.1088/2057-1976/ac182e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Insulin signaling pathways in muscle tissue play a major role in maintaining glucose homeostasis. Dysregulation in these pathways results in the onset of serious metabolic disorders like type 2 diabetes. Robustness is an essential characteristic of insulin signaling pathways that ensures reliable signal transduction in the presence of perturbations as a result of several feedback mechanisms. Integral control, according to control engineering, provides reliable setpoint tracking and disturbance rejection. The presence of negative feedback and integrating process is crucial for biological processes to achieve integral control. The existence of an integral controller leads to the rejection of perturbations which resulted in the robust regulation of biochemical entities within acceptable levels. In the presentin silicoresearch work, the presence of integral control in the protein kinase Cζ- insulin receptor substrate-1 (PKCζ-IRS1) pathway is identified, verified mathematically and model is simulated in Cell Designer. The data is exported to Minitab software and robustness analysis is carried out statistically using the Mann-Whitney test. The p-value of the results obtained with given parameters perturbed by ±1% is greater than the significance level of 0.05 (0.2132 for 1% error in k7(rate constant of IRS1 phosphorylation), 0.2096 for -1% error in k7, 0.9037 for both ±1% error in insulin and 0.9037 for ±1% error in k1(association rate constant of the first molecule of insulin to bind the insulin receptor), indicated that our hypothesis is proved The results satisfactorily indicate that even when perturbations are present, glucose homeostasis in muscle tissue is robust due to the presence of integral regulation in the PKCζ-IRS1 insulin signaling pathways. In this paper, we have analysed the findings from the framework of robust control theory, which has allowed us to examine that how PKCζ-IRS1 insulin signaling pathways produces desired output in presence of perturbations.
Collapse
Affiliation(s)
- Darshna M Joshi
- Department of Instrumentation and Control, Government Polytechnic Ahmedabad, Ahmedabad 380015, Gujarat, India.,Department of Instrumentation and Control, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Jignesh Patel
- Department of Instrumentation and Control, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
4
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? Feedback Inhibition and Other Modulating Factors of Glucocorticoid Signaling Dynamics. Int J Mol Sci 2021; 22:ijms22116050. [PMID: 34205191 PMCID: PMC8200046 DOI: 10.3390/ijms22116050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/12/2023] Open
Abstract
Previously, we found that basal corticosterone pulsatility significantly impacts the vulnerability for developing post-traumatic stress disorder (PTSD). Rats that exhibited PTSD-phenotype were characterized by blunted basal corticosterone pulsatility amplitude and a blunted corticosterone response to a stressor. This study sought to identify the mechanisms underlining both the loss of pulsatility and differences in downstream responses. Serial blood samples were collected manually via jugular vein cannula at 10-min intervals to evaluate suppression of corticosterone following methylprednisolone administration. The rats were exposed to predator scent stress (PSS) after 24 h, and behavioral responses were assessed 7 days post-exposure for retrospective classification into behavioral response groups. Brains were harvested for measurements of the glucocorticoid receptor, mineralocorticoid receptor, FK506-binding protein-51 and arginine vasopressin in specific brain regions to assess changes in hypothalamus–pituitary–adrenal axis (HPA) regulating factors. Methylprednisolone produced greater suppression of corticosterone in the PTSD-phenotype group. During the suppression, the PTSD-phenotype rats showed a significantly more pronounced pulsatile activity. In addition, the PTSD-phenotype group showed distinct changes in the ventral and dorsal CA1, dentate gyrus as well as in the paraventricular nucleus and supra-optic nucleus. These results demonstrate a pre-trauma vulnerability state that is characterized by an over-reactivity of the HPA and changes in its regulating factors.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 52621, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84170, Israel; (D.D.); (D.T.)
- Correspondence: ; Tel.: +972-544-369106
| |
Collapse
|
5
|
Drobac G, Waheed Q, Heidari B, Ruoff P. An amplified derepression controller with multisite inhibition and positive feedback. PLoS One 2021; 16:e0241654. [PMID: 33690601 PMCID: PMC7943023 DOI: 10.1371/journal.pone.0241654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
How organisms are able to maintain robust homeostasis has in recent years received increased attention by the use of combined control engineering and kinetic concepts, which led to the discovery of robust controller motifs. While these motifs employ kinetic conditions showing integral feedback and homeostasis for step-wise perturbations, the motifs’ performance differ significantly when exposing them to time dependent perturbations. One type of controller motifs which are able to handle exponentially and even hyperbolically growing perturbations are based on derepression. In these controllers the compensatory reaction, which neutralizes the perturbation, is derepressed, i.e. its reaction rate is increased by the decrease of an inhibitor acting on the compensatory flux. While controllers in this category can deal well with different time-dependent perturbations they have the disadvantage that they break down once the concentration of the regulatory inhibitor becomes too low and the compensatory flux has gained its maximum value. We wondered whether it would be possible to bypass this restriction, while still keeping the advantages of derepression kinetics. In this paper we show how the inclusion of multisite inhibition and the presence of positive feedback loops lead to an amplified controller which is still based on derepression kinetics but without showing the breakdown due to low inhibitor concentrations. By searching for the amplified feedback motif in natural systems, we found it as a part of the plant circadian clock where it is highly interlocked with other feedback loops.
Collapse
Affiliation(s)
- Gorana Drobac
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Qaiser Waheed
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Behzad Heidari
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|
6
|
Ruoff P, Nishiyama N. Frequency switching between oscillatory homeostats and the regulation of p53. PLoS One 2020; 15:e0227786. [PMID: 32433703 PMCID: PMC7239446 DOI: 10.1371/journal.pone.0227786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/03/2020] [Indexed: 11/19/2022] Open
Abstract
Homeostasis is an essential concept to understand the stability of organisms and their adaptive behaviors when coping with external and internal assaults. Many hormones that take part in homeostatic control come in antagonistic pairs, such as glucagon and insulin reflecting the inflow and outflow compensatory mechanisms to control a certain internal variable, such as blood sugar levels. By including negative feedback loops homeostatic controllers can exhibit oscillations with characteristic frequencies. In this paper we demonstrate the associated frequency changes in homeostatic systems when individual controllers -in a set of interlocked feedback loops- gain control in response to environmental changes. Taking p53 as an example, we show how Per2, ATM and Mdm2 feedback loops -interlocked with p53- gain individual control in dependence to the level of DNA damage, and how each of these controllers provide certain functionalities in their regulation of p53. In unstressed cells, the circadian regulator Per2 ensures a basic p53 level to allow its rapid up-regulation in case of DNA damage. When DNA damage occurs the ATM controller increases the level of p53 and defends it towards uncontrolled degradation, which despite DNA damage, would drive p53 to lower values and p53 dysfunction. Mdm2 on its side keeps p53 at a high but sub-apoptotic level to avoid premature apoptosis. However, with on-going DNA damage the Mdm2 set-point is increased by HSP90 and other p53 stabilizers leading finally to apoptosis. An emergent aspect of p53 upregulation during cell stress is the coordinated inhibition of ubiquitin-independent and ubiquitin-dependent degradation reactions. Whether oscillations serve a function or are merely a by-product of the controllers are discussed in view of the finding that homeostatic control of p53, as indicated above, does in principle not require oscillatory homeostats.
Collapse
Affiliation(s)
- Peter Ruoff
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway
- * E-mail:
| | - Nobuaki Nishiyama
- Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|