1
|
Zehentner B, Scherer S, Neuhaus K. Non-canonical transcriptional start sites in E. coli O157:H7 EDL933 are regulated and appear in surprisingly high numbers. BMC Microbiol 2023; 23:243. [PMID: 37653502 PMCID: PMC10469882 DOI: 10.1186/s12866-023-02988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Analysis of genome wide transcription start sites (TSSs) revealed an unexpected complexity since not only canonical TSS of annotated genes are recognized by RNA polymerase. Non-canonical TSS were detected antisense to, or within, annotated genes as well new intergenic (orphan) TSS, not associated with known genes. Previously, it was hypothesized that many such signals represent noise or pervasive transcription, not associated with a biological function. Here, a modified Cappable-seq protocol allows determining the primary transcriptome of the enterohemorrhagic E. coli O157:H7 EDL933 (EHEC). We used four different growth media, both in exponential and stationary growth phase, replicated each thrice. This yielded 19,975 EHEC canonical and non-canonical TSS, which reproducibly occurring in three biological replicates. This questions the hypothesis of experimental noise or pervasive transcription. Accordingly, conserved promoter motifs were found upstream indicating proper TSSs. More than 50% of 5,567 canonical and between 32% and 47% of 10,355 non-canonical TSS were differentially expressed in different media and growth phases, providing evidence for a potential biological function also of non-canonical TSS. Thus, reproducible and environmentally regulated expression suggests that a substantial number of the non-canonical TSSs may be of unknown function rather than being the result of noise or pervasive transcription.
Collapse
Affiliation(s)
- Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
- Core Facility Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Cai X, Li B, Li X, Dang H, Wang D, Pei Z, Feng X, Ren X, Kong Q. Characteristic Structures of Different Stilbenes Distinguish the Impact on Ochratoxin A Biosynthesis Intermediate Pathway and Metabolites of Aspergillus carbonarius. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7996-8007. [PMID: 37192315 DOI: 10.1021/acs.jafc.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we accurately pinpointed the inhibition sites of ochratoxin A (OTA) synthesis pathway in Aspergillus carbonarius acted by stilbenes from the perspective of oxidative stress and comprehensively explored the relationship between the physical and chemical properties of natural polyphenolic substances and their biochemical properties of antitoxin. To facilitate the application of ultra-high-performance liquid chromatography and triple quadrupole mass spectrometry for real-time tracking of pathway intermediate metabolite content, the synergistic effect of Cu2+-stilbenes self-assembled carriers was utilized. Cu2+ increased the generation of reactive oxygen species to accumulate mycotoxin content, while stilbenes had the inhibitory effect. The impact of the m-methoxy structure of pterostilbene on A. carbonarius was found to be superior to that of resorcinol and catechol. The m-methoxy structure of pterostilbene acted on the key regulator Yap1, downregulated the expression of antioxidant enzymes, and accurately inhibited the halogenation step of the OTA synthesis pathway, thus accumulating the content of OTA precursors. This provided a theoretical basis for the extensive and efficient application of a wide range of natural polyphenolic substances for postharvest disease control and quality assurance of grape products.
Collapse
Affiliation(s)
- Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Boqiang Li
- Chinese Academy Sciences, Institute of Botany, Key Lab Plant Resources, Beijing 100093, P. R. China
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhifei Pei
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
3
|
Whole Genome Sequencing and CRISPR/Cas9 Gene Editing of Enterotoxigenic Escherichia coli BE311 for Fluorescence Labeling and Enterotoxin Analyses. Int J Mol Sci 2022; 23:ijms23147502. [PMID: 35886856 PMCID: PMC9321511 DOI: 10.3390/ijms23147502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
Some prevention strategies, including vaccines and antibiotic alternatives, have been developed to reduce enterotoxigenic Escherichia coli proliferation in animal production. In this study, a wild-type strain of BE311 with a virulent heat-stable enterotoxin gene identical to E. coli K99 was isolated for its high potential for gene expression ability. The whole genome of E. coli BE311 was sequenced for gene analyses and editing. Subsequently, the fluorescent gene mCherry was successfully knocked into the genome of E. coli BE311 by CRISPR/Cas9. The E. coli BE311−mCherry strain was precisely quantified through the fluorescence intensity and red colony counting. The inflammatory factors in different intestinal tissues all increased significantly after an E. coli BE311−mCherry challenge in Sprague−Dawley rats (p < 0.05). The heat-stable enterotoxin gene of E. coli BE311 was knocked out, and an attenuated vaccine host E. coli BE311-STKO was constructed. Flow cytometry showed apoptotic cell numbers were lower following a challenge of IPEC-J2 cells with E. coli BE311-STKO than with E. coli BE311. Therefore, the E. coli BE311−mCherry and E. coli BE311-STKO strains that were successfully constructed based on the gene knock-in and knock-out technology could be used as ideal candidates in ETEC challenge models and for the development of attenuated vaccines.
Collapse
|
4
|
Garimano N, Diaz Vergara LI, Kim AD, Badin EE, Sodero S, Bernal AM, Gonzalez DD, Amaral MM, Lespinard AR, Porporatto C, Montenegro MA, Palermo MS, Larzabal M, Cataldi AA, Ibarra C, Sacerdoti F. Preservation of protective capacity of hyperimmune anti-Stx2 bovine colostrum against enterohemorrhagic Escherichia coli O157:H7 pathogenicity after pasteurization and spray-drying processes. J Dairy Sci 2021; 104:5229-5238. [PMID: 33685676 DOI: 10.3168/jds.2020-19709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major etiologic agent that causes bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the main virulence factor of EHEC responsible for the progression to HUS. Although many laboratories have made efforts to develop an effective treatment for Stx-mediated HUS, a specific therapy has not been found yet. Human consumption of bovine colostrum is known to have therapeutic effects against several gastrointestinal infections because of the peptide and proteins (including antibodies) with direct antimicrobial and endotoxin-neutralizing effects contained in this fluid. We have previously demonstrated that colostrum from Stx type 2 (Stx2)-immunized pregnant cows effectively prevents Stx2 cytotoxicity and EHEC O157:H7 pathogenicity. In this study we evaluated the preservation of the protective properties of hyperimmune colostrum against Stx2 (HIC-Stx2) after pasteurization and spray-drying processes by performing in vitro and in vivo assays. Our results showed that reconstituted HIC-Stx2 colostrum after pasteurization at 60°C for 60 min and spray-dried under optimized conditions preserved specific IgG that successfully neutralized Stx2 cytotoxicity on Vero cells. Furthermore, this pasteurized/dehydrated and reconstituted HIC-Stx2 preserved the protective capacity against EHEC infection in a weaned mice model. The consumption of hyperimmune HIC-Stx2 bovine colostrum could be effective for HUS prevention in humans as well as in EHEC control in calves. However, further studies need to be done to consider its use for controlling EHEC infections.
Collapse
Affiliation(s)
- N Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - L I Diaz Vergara
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - A D Kim
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - E E Badin
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - S Sodero
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - A M Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina, 1425
| | - D D Gonzalez
- Instituto de Virología/INVIT-CICVyA, National Institute of Agricultural Technology (INTA)-Castelar, Buenos Aires, Argentina, 1686
| | - M M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - A R Lespinard
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - C Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - M A Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - M S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina, 1425
| | - M Larzabal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, INTA-CONICET, Buenos Aires, Argentina, 1121
| | - A A Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, INTA-CONICET, Buenos Aires, Argentina, 1121
| | - C Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - F Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121.
| |
Collapse
|
5
|
Deciphering Additional Roles for the EF-Tu, l-Asparaginase II and OmpT Proteins of Shiga Toxin-Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8081184. [PMID: 32759661 PMCID: PMC7464798 DOI: 10.3390/microorganisms8081184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.
Collapse
|