1
|
Jacenik D, Hikisz P, Beswick EJ, Fichna J. The clinical relevance of the adhesion G protein-coupled receptor F5 for human diseases and cancers. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166683. [PMID: 36878303 PMCID: PMC10164118 DOI: 10.1016/j.bbadis.2023.166683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Among the numerous adhesion G protein-coupled receptors (GPCRs), adhesion G protein-coupled estrogen receptor F5 (ADGRF5) contains unique domains in the long N-terminal tail which can determine cell-cell and cell-matrix interaction as well as cell adhesion. Nevertheless, the biology of ADGRF5 is complex and still poorly explored. Accumulating evidence suggests that the ADGRF5 activity is fundamental in health and disease. For instance, ADGRF5 is essential in the proper function of lungs and kidney as well as the endocrine system, and its signification in vascularization and tumorigenesis has been demonstrated. The most recent studies have provided findings about the diagnostic potential of ADGRF5 in osteoporosis and cancers, and ongoing studies suggest other diseases as well. Here, we elaborate on the current state of knowledge about the ADGRF5 in the physiology and pathophysiology of human diseases and highlight its high potential as a novel target in various therapeutic areas.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States.
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Daly AE, Deible CG, Lamb CE, Santacaterina SM, Marzolf NL, Page AE, Horohov DW, Wood PL, Werre SR, Chapman SE, Christmann U. Surfactant protein D concentrations in serum and bronchoalveolar lavage fluid from young healthy horses on pasture and in a barn environment. Am J Vet Res 2021; 82:152-157. [PMID: 33480279 DOI: 10.2460/ajvr.82.2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate surfactant protein D (SP-D) concentrations in serum and bronchoalveolar lavage fluid (BALF) from young healthy horses on pasture or housed in a typical barn. ANIMALS 20 young healthy horses. PROCEDURES Horses were randomly assigned to 1 of 2 groups (pasture, n = 10; barn, 10), and serum and BALF samples were collected for SP-D determination at baseline (all horses on pasture) and 2 weeks and 4 weeks after the barn group of horses was relocated from the pasture to the barn. Other evaluations included physical and tracheoscopic examinations. Findings were compared within and between groups. RESULTS Physical and tracheoscopic examinations, CBC, and serum biochemical analysis did not reveal evidence of respiratory disease, and no significant differences were present within and between groups. Serum SP-D concentrations did not significantly differ within and between groups, but BALF SP-D concentrations were significantly lower for the barn group at 2 weeks but not at 4 weeks, compared with baseline. The BALF SP-D concentration-to-BALF total protein concentration ratio was < 1.5 and did not significantly differ within and between groups. CONCLUSIONS AND CLINICAL RELEVANCE A mild decrease was evident in the concentration of SP-D in the BALF collected from young healthy horses after 2 weeks of exposure to a barn environment. The clinical importance of this finding remains to be determined.
Collapse
|
3
|
Vizurraga A, Adhikari R, Yeung J, Yu M, Tall GG. Mechanisms of adhesion G protein-coupled receptor activation. J Biol Chem 2020; 295:14065-14083. [PMID: 32763969 DOI: 10.1074/jbc.rev120.007423] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.
Collapse
Affiliation(s)
- Alexander Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jennifer Yeung
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Flayer CH, Ge MQ, Hwang JW, Kokalari B, Redai IG, Jiang Z, Haczku A. Ozone Inhalation Attenuated the Effects of Budesonide on Aspergillus fumigatus-Induced Airway Inflammation and Hyperreactivity in Mice. Front Immunol 2019; 10:2173. [PMID: 31572383 PMCID: PMC6753328 DOI: 10.3389/fimmu.2019.02173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Inhaled glucocorticoids form the mainstay of asthma treatment because of their anti-inflammatory effects in the lung. Exposure to the air pollutant ozone (O3) exacerbates chronic airways disease. We and others showed that presence of the epithelial-derived surfactant protein-D (SP-D) is important in immunoprotection against inflammatory changes including those induced by O3 inhalation in the airways. SP-D synthesis requires glucocorticoids. We hypothesized here that O3 exposure impairs glucocorticoid responsiveness (including SP-D production) in allergic airway inflammation. The effects of O3 inhalation and glucocorticoid treatment were studied in a mouse model of allergic asthma induced by sensitization and challenge with Aspergillus fumigatus (Af) in vivo. The role of O3 and glucocorticoids in regulation of SP-D expression was investigated in A549 and primary human type II alveolar epithelial cells in vitro. Budesonide inhibited airway hyperreactivity, eosinophil counts in the lung and bronchoalveolar lavage (BAL) and CCL11, IL-13, and IL-23p19 release in the BAL of mice sensitized and challenged with Af (p < 0.05). The inhibitory effects of budesonide were attenuated on inflammatory changes and were completely abolished on airway hyperreactivity after O3 exposure of mice sensitized and challenged with Af. O3 stimulated release of pro-neutrophilic mediators including CCL20 and IL-6 into the airways and impaired the inhibitory effects of budesonide on CCL11, IL-13 and IL-23. O3 also prevented budesonide-induced release of the immunoprotective lung collectin SP-D into the airways of allergen-challenged mice. O3 had a bi-phasic direct effect with early (<12 h) inhibition and late (>48 h) activation of SP-D mRNA (sftpd) in vitro. Dexamethasone and budesonide induced sftpd transcription and translation in human type II alveolar epithelial cells in a glucocorticoid receptor and STAT3 (an IL-6 responsive transcription factor) dependent manner. Our study indicates that O3 exposure counteracts the effects of budesonide on airway inflammation, airway hyperreactivity, and SP-D production. We speculate that impairment of SP-D expression may contribute to the acute O3-induced airway inflammation. Asthmatics exposed to high ambient O3 levels may become less responsive to glucocorticoid treatment during acute exacerbations.
Collapse
Affiliation(s)
- Cameron H Flayer
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| | - Moyar Q Ge
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin W Hwang
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Blerina Kokalari
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Imre G Redai
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhilong Jiang
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Angela Haczku
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|