1
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
3
|
Rahimi MD, Hassani P, Kheirkhah MT, Fadardi JS. Effectiveness of eye movement exercise and diaphragmatic breathing with jogging in reducing migraine symptoms: A preliminary, randomized comparison trial. Brain Behav 2023; 13:e2820. [PMID: 36454123 PMCID: PMC9847608 DOI: 10.1002/brb3.2820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial headache disorder. Maladaptive functional networks or altered circuit-related connectivity in the brain with migraine appear to perturb the effects of usual treatments. OBJECTIVES In the present preliminary trial, we aim to study the effectiveness of performing pieces of body-mind, cognitive, or network reconstruction-based training (i.e., eye movement exercise plus jogging; EME+J and diaphragmatic breathing plus jogging; DB+J) in decreasing migraine symptoms. METHODS We used a three-arm, triple-blind, non-inferiority randomized comparison design with pre-test, post-test, and follow-up measurements to assess the effectiveness of EME+J and DB+J in the brain with migraine. Participants were randomly assigned to one of the study groups to perform either 12 consecutive weeks of EME+J (n = 22), DB+J (n = 19), or receiving, treatment as usual, TAU (n = 22). RESULTS The primary outcome statistical analysis through a linear mixed model showed a significant decrease in the frequency (p = .0001), duration (p = .003), and intensity (p = .007) of migraine attacks among the interventions and measurement times. The pairwise comparisons of simple effects showed that EME+J and DB+J effectively reduced migraine symptoms at the post-test and follow-up (p < .05). Cochran's tests showed that interventions decreased the number of menses-related migraine attacks. EME+J and DB+J effectively decreased over-the-counter (OTC) drug use, refreshed wake-up mode, and improved sleep and water drinking patterns. These are the secondary outcomes that Cochran's tests showed in the interventional groups after the interventions and at 12 months of follow-up. CONCLUSION EME+J or DB+J can be an effective and safe method with no adverse effects to decrease the symptoms of migraine attacks. Moreover, a reduction in the frequency of menstrual cycle-related attacks, OTC drug use, and improved quality of sleep and drinking water were the secondary outcomes of the post-test and a 12-month follow-up.
Collapse
Affiliation(s)
| | - Pouriya Hassani
- Department of Cognitive Neuroscience and Clinical Neuropsychology, University of Padova, Padua, Italy
| | | | - Javad Salehi Fadardi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran.,School of Community and Global Health, Claremont Graduate University, Claremont, California, USA.,School of Psychology, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Nikolova S, Schwedt TJ. Magnetic resonance spectroscopy studies in migraine. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100102. [PMID: 36531616 PMCID: PMC9755026 DOI: 10.1016/j.ynpai.2022.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/17/2023]
Abstract
This review summarizes major findings and recent advances in magnetic resonance spectroscopy (MRS) of migraine. A multi database search of PubMed, EMBASE, and Web of Science was performed with variations of magnetic resonance spectroscopy and headache until 20th September 2021. The search generated 2897 studies, 676 which were duplicates and 1836 were not related to headache. Of the remaining 385 studies examined, further exclusions for not migraine (n = 114), and not MRS of human brain (n = 128), and non-original contributions (n = 51) or conferences (n = 24) or case studies (n = 11) or non-English (n = 3), were applied. The manuscripts of all resulting reports were reviewed for their possible inclusion in this manuscript (n = 54). The reference lists of all included reports were carefully reviewed and articles relevant to this review were added (n = 2).Included are 56 studies of migraine with and without aura that involve magnetic resonance spectroscopy of the human brain. The topics are presented in the form of a narrative review. This review aims to provide a summary of the metabolic changes measured by MRS in patients with migraine. Despite the variability reported between studies, common findings focused on regions functionally relevant to migraine such as occipital cortices, thalamic nuclei, cerebellum and cingulate. The most reproducible results were decreased N-acetyl-aspartate (NAA) in cerebellum in patients with hemiplegic migraine and in the thalamus of chronic migraine patients. Increased lactate (Lac) in the occipital cortex was found for migraine with aura but not in subjects without aura. MRS studies support the hypothesis of impaired energetics and mitochondrial dysfunction in migraine. Although results regarding GABA and Glu were less consistent, studies suggest there might be an imbalance of these important inhibitory and excitatory neurotransmitters in the migraine brain. Multinuclear imaging studies in migraine with and without aura, predominantly investigating phosphorous, report alterations of PCr in occipital, parietal, and posterior brain regions. There have been too few studies to assess the diagnostic relevance of sodium imaging in migraine.
Collapse
Affiliation(s)
| | - Todd J. Schwedt
- Corresponding author at: 5777 East Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
5
|
Fong CY, Law WHC, Fahrenfort JJ, Braithwaite JJ, Mazaheri A. Attenuated alpha oscillation and hyperresponsiveness reveals impaired perceptual learning in migraineurs. J Headache Pain 2022; 23:44. [PMID: 35382735 PMCID: PMC8981672 DOI: 10.1186/s10194-022-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background Anomalous phantom visual perceptions coupled to an aversion and discomfort to some visual patterns (especially grating in mid-range spatial frequency) have been associated with the hyperresponsiveness in migraine patients. Previous literature has found fluctuations of alpha oscillation (8-14 Hz) over the visual cortex to be associated with the gating of the visual stream. In the current study, we examined whether alpha activity was differentially modulated in migraineurs in anticipation of an upcoming stimulus as well as post-stimulus periods. Methods We used EEG to examine the brain activity in a group of 28 migraineurs (17 with aura /11 without) and 29 non-migraineurs and compared their alpha power in the pre/post-stimulus period relative to the onset of stripped gratings. Results Overall, we found that migraineurs had significantly less alpha power prior to the onset of the stimulus relative to controls. Moreover, migraineurs had significantly greater post-stimulus alpha suppression (i.e event-related desynchronization) induced by the grating in 3 cycles per degree at the 2nd half of the experiment. Conclusions These findings, taken together, provide strong support for the presence of the hyperresponsiveness of the visual cortex of migraine sufferers. We speculate that it could be the consequence of impaired perceptual learning driven by the dysfunction of GABAergic inhibitory mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01410-2.
Collapse
|
6
|
Wu X, Han S, Yang Y, Dai H, Wu P, Zhao H, Jin X, Li Y. Decreased brain GABA levels in patients with migraine without aura: an exploratory proton magnetic resonance spectroscopy study. Neuroscience 2022; 488:10-19. [PMID: 35182698 DOI: 10.1016/j.neuroscience.2022.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
Increasing neurophysiological studies had revealed that regional excitation-inhibition imbalance in the brain played a key role in the pathogenesis of migraine. This study aimed to explore the alterations in gamma-aminobutyric acid (GABA) and glutamate/glutamine complex (Glx) levels in the anterior cingulate gyrus (ACC) and medial prefrontal lobe (mPFC) of patients with migraine without aura (MWoA) and investigate the correlation between neurotransmitter levels and clinical indicators. A total of 28 patients with MWoA and 28 sex-, age-, and education level-matched healthy controls (HCs) underwent single-voxel proton magnetic resonance spectroscopy scanning at 3.0 Tesla. MEscher-Garwood Point RESolved Spectroscopy (MEGA-PRESS) sequence was performed to acquire the spectral data of GABA and Glx in the ACC and mPFC. The clinical indicators and anxiety-depression states of all participants were assessed. The acquired GABA signal contained the overlapping signals of macromolecules and homocarnosine, hence expressed as GABA+. The creatine (Cr) signal was applied as an endogenous reference. We observed that GABA+/Cr levels were significantly lower in ACC and mPFC of patients with MWoA than of HCs, with no significant difference in Glx levels. Negative correlations between GABA+/Cr levels and attack frequency were found in the ACC and mPFC regions of patients. These results suggested that there might be a close relationship between ACC and mPFC GABAergic neurons abnormalities and the pathophysiological mechanisms of MWoA. It might be beneficial to targeted treatment for patients with MWoA.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road, Suzhou City, Jiangsu Province 215000, China
| | - Shuting Han
- Department of Radiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road, Suzhou City, Jiangsu Province 215000, China
| | - Yang Yang
- Department of Radiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road, Suzhou City, Jiangsu Province 215000, China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road, Suzhou City, Jiangsu Province 215000, China
| | - Peng Wu
- Philips Healthcare, Shanghai 200072, China
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road, Suzhou City, Jiangsu Province 215000, China.
| | - Xiaohong Jin
- Department of Pain Management, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou City, Jiangsu Province 215000, China.
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road, Suzhou City, Jiangsu Province 215000, China.
| |
Collapse
|
7
|
Li H, Heise KF, Chalavi S, Puts NAJ, Edden RAE, Swinnen SP. The role of MRS-assessed GABA in human behavioral performance. Prog Neurobiol 2022; 212:102247. [PMID: 35149113 DOI: 10.1016/j.pneurobio.2022.102247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Understanding the neurophysiological mechanisms that drive human behavior has been a long-standing focus of cognitive neuroscience. One well-known neuro-metabolite involved in the creation of optimal behavioral repertoires is GABA, the main inhibitory neurochemical in the human brain. Converging evidence from both animal and human studies indicates that individual variations in GABAergic function are associated with behavioral performance. In humans, one increasingly used in vivo approach to measuring GABA levels is through Magnetic Resonance Spectroscopy (MRS). However, the implications of MRS measures of GABA for behavior remain poorly understood. In this respect, it is yet to be determined how GABA levels within distinct task-related brain regions of interest account for differences in behavioral performance. This review summarizes findings from cross-sectional studies that determined baseline MRS-assessed GABA levels and examined their associations with performance on various behaviors representing the perceptual, motor and cognitive domains, with a particular focus on healthy participants across the lifespan. Overall, the results indicate that MRS-assessed GABA levels play a pivotal role in various domains of behavior. Even though some converging patterns emerge, it is challenging to draw comprehensive conclusions due to differences in behavioral task paradigms, targeted brain regions of interest, implemented MRS techniques and reference compounds used. Across all studies, the effects of GABA levels on behavioral performance point to generic and partially independent functions that refer to distinctiveness, interference suppression and cognitive flexibility. On one hand, higher baseline GABA levels may support the distinctiveness of neural representations during task performance and better coping with interference and suppression of preferred response tendencies. On the other hand, lower baseline GABA levels may support a reduction of inhibition, leading to higher cognitive flexibility. These effects are task-dependent and appear to be mediated by age. Nonetheless, additional studies using emerging advanced methods are required to further clarify the role of MRS-assessed GABA in behavioral performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - Nicolaas A J Puts
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| |
Collapse
|
8
|
Peek AL, Leaver AM, Foster S, Puts NA, Oeltzschner G, Henderson L, Galloway G, Ng K, Refshauge K, Rebbeck T. Increase in ACC GABA+ levels correlate with decrease in migraine frequency, intensity and disability over time. J Headache Pain 2021; 22:150. [PMID: 34903165 PMCID: PMC8903525 DOI: 10.1186/s10194-021-01352-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules (“GABA+”) using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. Methods We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. Results The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = − 0.51, p = 0.03), intensity (r = − 0.51, p = 0.03) and disability (r = − 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). Conclusion The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01352-1.
Collapse
Affiliation(s)
- Aimie L Peek
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia. .,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia.
| | - Andrew M Leaver
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Sheryl Foster
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Radiology, Westmead Hospital, Hawkesbury Road, Westmead, New South Wales, 2145, Australia
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, UK
| | - Georg Oeltzschner
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Luke Henderson
- School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Graham Galloway
- The University of Queensland, St Lucia, Queensland, 4072, Australia.,Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Karl Ng
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Neurology, Royal North Shore Hospital, Reserve Road, St Leonards, New South Wales, 2065, Australia
| | - Kathryn Refshauge
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Trudy Rebbeck
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
O’Hare L, Asher JM, Hibbard PB. Migraine Visual Aura and Cortical Spreading Depression-Linking Mathematical Models to Empirical Evidence. Vision (Basel) 2021; 5:30. [PMID: 34200625 PMCID: PMC8293461 DOI: 10.3390/vision5020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
This review describes the subjective experience of visual aura in migraine, outlines theoretical models of this phenomenon, and explores how these may be linked to neurochemical, electrophysiological, and psychophysical differences in sensory processing that have been reported in migraine with aura. Reaction-diffusion models have been used to model the hallucinations thought to arise from cortical spreading depolarisation and depression in migraine aura. One aim of this review is to make the underlying principles of these models accessible to a general readership. Cortical spreading depolarisation and depression in these models depends on the balance of the diffusion rate between excitation and inhibition and the occurrence of a large spike in activity to initiate spontaneous pattern formation. We review experimental evidence, including recordings of brain activity made during the aura and attack phase, self-reported triggers of migraine, and psychophysical studies of visual processing in migraine with aura, and how these might relate to mechanisms of excitability that make some people susceptible to aura. Increased cortical excitability, increased neural noise, and fluctuations in oscillatory activity across the migraine cycle are all factors that are likely to contribute to the occurrence of migraine aura. There remain many outstanding questions relating to the current limitations of both models and experimental evidence. Nevertheless, reaction-diffusion models, by providing an integrative theoretical framework, support the generation of testable experimental hypotheses to guide future research.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| |
Collapse
|
10
|
Jagtap AR, Brascamp JW. Does Cortical Inhibition Explain the Correlation Between Bistable Perception Paradigms? Iperception 2021; 12:20416695211020018. [PMID: 34104385 PMCID: PMC8161874 DOI: 10.1177/20416695211020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
When observers view a perceptually bistable stimulus, their perception changes stochastically. Various studies have shown across-observer correlations in the percept durations for different bistable stimuli including binocular rivalry stimuli and bistable moving plaids. Previous work on binocular rivalry posits that neural inhibition in the visual hierarchy is a factor involved in the perceptual fluctuations in that paradigm. Here, in order to investigate whether between-observer variability in cortical inhibition underlies correlated percept durations between binocular rivalry and bistable moving plaid perception, we used center-surround suppression as a behavioral measure of cortical inhibition. We recruited 217 participants in a test battery that included bistable perception paradigms as well as a center-surround suppression paradigm. While we were able to successfully replicate the correlations between binocular rivalry and bistable moving plaid perception, we did not find a correlation between center-surround suppression strength and percept durations for any form of bistable perception. Moreover, the results from a mediation analysis indicate that center-surround suppression is not the mediating factor in the correlation between binocular rivalry and bistable moving plaids. These results do not support the idea that cortical inhibition can explain the between-observer correlation in mean percept duration between binocular rivalry and bistable moving plaid perception.
Collapse
Affiliation(s)
- Abhilasha R. Jagtap
- Department of Psychology, Michigan State University, East Lansing, United States
| | - Jan W. Brascamp
- Department of Psychology, Michigan State University, East Lansing, United States
| |
Collapse
|
11
|
Bell T, Stokoe M, Khaira A, Webb M, Noel M, Amoozegar F, Harris AD. GABA and glutamate in pediatric migraine. Pain 2021; 162:300-308. [PMID: 33326202 PMCID: PMC7737876 DOI: 10.1097/j.pain.0000000000002022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Migraine is one of the top 5 most prevalent childhood diseases; however, effective treatment strategies for pediatric migraine are limited. For example, standard adult pharmaceutical therapies are less effective in children and can carry undesirable side effects. To develop more effective treatments, improved knowledge of the biology underlying pediatric migraine is necessary. One theory is that migraine results from an imbalance in cortical excitability. Magnetic resonance spectroscopy (MRS) studies show changes in GABA and glutamate levels (the primary inhibitory and excitatory neurotransmitters in the brain, respectively) in multiple brain regions in adults with migraine; however, they have yet to be assessed in children with migraine. Using MRS and GABA-edited MRS, we show that children (7-13 years) with migraine and aura had significantly lower glutamate levels in the visual cortex compared to controls, the opposite to results seen in adults. In addition, we found significant correlations between metabolite levels and migraine characteristics; higher GABA levels were associated with higher migraine burden. We also found that higher glutamate in the thalamus and higher GABA/Glx ratios in the sensorimotor cortex were associated with duration since diagnosis, i.e., having migraines longer. Lower GABA levels in the sensorimotor cortex were associated with being closer to their next migraine attack. Together, this indicates that GABA and glutamate disturbances occur early in migraine pathophysiology and emphasizes that evidence from adults with migraine cannot be immediately translated to pediatric sufferers. This highlights the need for further mechanistic studies of migraine in children, to aid in development of more effective treatments.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Akashroop Khaira
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Megan Webb
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Farnaz Amoozegar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Peek AL, Rebbeck T, Puts NAJ, Watson J, Aguila MER, Leaver AM. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 2020; 210:116532. [DOI: 10.1016/j.neuroimage.2020.116532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
|