1
|
Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules 2023; 28:molecules28031190. [PMID: 36770856 PMCID: PMC9920429 DOI: 10.3390/molecules28031190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
The genus Justicia has more than 600 species distributed in both hemispheres, in the tropics and temperate regions, and it is used in the treatment of numerous pathologies. This study presents a review of the biological activities of plant extracts and isolated chemical constituents of Justicia (ACANTHACEAE), identified in the period from May 2011 to August 2022. We analyzed over 176 articles with various biological activities and chemical compound descriptions present in the 29 species of Justicia. These have a variety of applications, such as antioxidant and antimicrobial, with alkaloids and flavonoids (e.g., naringenin) the most frequently identified secondary metabolites. The most observed species were Justicia gendarussa Burm., Justicia procumbens L., Justicia adhatoda L., Justicia spicigera Schltdl, and Justicia pectoralis Jacq. The frontier molecular orbitals carried out using density functional theory (M062X and basis set 6-311++G(d,p) indicate reactive sites for naringenin compound and a chemical reaction on phytomedicine activity. The energy gap (206.99 kcal/mol) and dimer solid state packing point to chemical stability. Due to the wide variety of pharmacological uses of these species, this review points toward the development of new phytomedicines.
Collapse
|
2
|
Khunmanee S, Park H. Three-Dimensional Culture for In Vitro Folliculogenesis in the Aspect of Methods and Materials. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1242-1257. [PMID: 35822548 DOI: 10.1089/ten.teb.2021.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro ovarian follicle culture is a reproduction technique used to obtain fertilizable oocytes, for overcoming fertility issues due to premature ovarian failure. This requires the establishment of an in vitro culture model that is capable of better simulating the in vivo ovarian growth environment. Two-dimensional (2D) culture systems have been successfully set up in rodent models. However, they are not suitable for larger animal models as the follicles of larger animals cultured in 2D culture systems often lose their shape due to dysfunction in the gap junctions. Three-dimensional (3D) culture systems are more suitable for maintaining follicle architecture, and therefore are proposed for the successful in vitro culturing of follicles in various animal models. The role of different methods, scaffolds, and suspension cultures in supporting follicle development has been studied to provide direction for improving in vitro follicle culture technologies. The three major strategies for in vitro 3D follicle cultures are discussed in this article. First, the in vitro culture systems, such as microfluidics, hanging drop, hydrogels, and 3D-printing, are reviewed. We have focused on the 3D hydrogel system as it uses different materials for supporting follicular growth and oocyte maturation in several animal models and in humans. We have also discussed the criteria used for biomaterial evaluations such as solid concentration, elasticity, and rigidity. In addition, future research directions for advancing in vitro 3D follicle culture system are discussed. Impact statement A new frontier in assisted reproductive technology is in vitro tissue or follicle culture, particularly for fertility preservation. The in vitro three-dimensional (3D) culture technique enhances follicular development and provides mature oocytes, overcoming the limitations of traditional in vitro two-dimensional cultures. Polymer biomaterials have good compatibility and retain the physiological structure of follicles in the 3D culture system. Utilizing hybrid in vitro culture materials by merging matrix, hydrogel, and unique patterned materials may facilitate follicular growth in the future.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| |
Collapse
|
3
|
Azevedo VAN, Barroso PAA, Vasconcelos EM, Costa FC, Assis EIT, Silva BR, Paulino LRM, Silva AWB, Donato MMA, Peixoto CA, Silva JRV, Souza ALP. Effects of Aloe vera extract on growth, viability, ultrastructure and expression of mRNA for antioxidant enzymes in bovine secondary follicles cultured in vitro. Anim Reprod Sci 2022; 247:107078. [PMID: 36179655 DOI: 10.1016/j.anireprosci.2022.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the effects of Aloe vera extract on follicular growth, viability, ultrastructure, and mRNA levels for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 1 (GPX1) and peroxiredoxin 6 (PRDX6) in bovine secondary follicles cultured in vitro. To this end, secondary follicles were mechanically isolated from the ovarian cortex and cultured at 38.5 °C, with 5% CO2 in air, for 18 days in TCM-199+ alone or supplemented with 2.5%, 5.0%, 10.0% and 20.0% Aloe vera extract. Follicular growth, morphology and antrum formation were evaluated every 6 days, while ultrastructure was evaluated at the end of culture. Analysis of viability was performed by calcein-AM and ethidium homodimer-1, while mRNA levels for SOD, CAT, GPX1 and PRDX6 were evaluated by real-time PCR at the end of culture. The results show that follicles cultured with 2.5% Aloe vera had increased the rate of antrum formation, while 2.5% and 5.0% Aloe vera improved follicular viability rate. Follicles cultured with 2.5% and 10.0% Aloe vera increased the levels of mRNA for SOD and GPX1 respectively, but the levels of CAT were reduced in follicles cultured with 2.5%, 5.0%, 10.0% and 20.0%. Additionally, follicles cultured with 2.5% of Aloe vera had their ultrastructure well preserved, while those cultured with 5.0%, 10.0% and 20.0% exhibited increased oocyte vacuolization and damaged organelles. In conclusion, 2.5% Aloe vera increases antrum formation, viability and expression of mRNA for SOD in cultured secondary follicles, but higher concentrations of Aloe vera have negative effects on follicular ultrastructure.
Collapse
Affiliation(s)
- Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Pedro A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Erlândia M Vasconcelos
- Laboratory of Media Preparation and In vitro Production of Embryos, Federal University of Rio de Janeiro, RJ, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Ernando I T Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Laís R M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Mariana M A Donato
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, PE, Brazil
| | - Cristina A Peixoto
- Laboratory of Ultrastructure, CPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, PE, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil.
| | - Ana L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| |
Collapse
|
4
|
Aloe vera increases collagen fibres in extracellular matrix and mRNA expression of peroxiredoxin-6 in bovine ovarian cortical tissues cultured in vitro. ZYGOTE 2021; 30:365-372. [PMID: 34851249 DOI: 10.1017/s0967199421000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vitro culture of ovarian tissue containing primordial follicles is an important tool to study the initiation of follicular populations and to develop efficient culture systems to support in vitro follicle growth. Considering that in vitro culture favours oxidative stress, it is very important to supplement culture medium with antioxidant substances such as Aloe vera extract. This study aims to evaluate the effects of different concentrations of Aloe vera on the distribution of collagen fibres in the extracellular matrix, follicular activation, development and survival in bovine ovarian cortical tissues cultured in vitro, as well as on expression of mRNAs for antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxiredoxin 6 (PRDX6) and glutathione peroxidase 1 (GPX1)]. To this end, ovarian cortical tissues were cultured for 6 days in α-MEM alone or supplemented with different concentrations of Aloe vera extract (1.0, 5.0, 10.0 or 50.0%). After culture, fragments were fixed and processed histologically to evaluate follicular morphology and activation, as well as the extracellular matrix by staining with picrosirius red. The levels of mRNA for SOD, CAT, PRDX6 and GPX1 in cultured ovarian tissues were evaluated by real-time polymerase chain reaction (PCR). Ovarian tissues cultured with 10.0 or 50.0% Aloe vera had higher percentages of collagen fibres than tissues cultured in control medium. A significant increase in developing follicles was observed in ovarian tissues cultured in α-MEM alone or supplemented with 10% Aloe vera when compared with fresh control or tissues cultured with 1.0% Aloe vera. Presence of Aloe vera did not influence the percentage of morphologically normal follicles when compared with control medium. Ovarian tissues cultured with 50.0% Aloe vera had higher percentages of morphologically normal follicles than those cultured with 10.0% Aloe vera. Furthermore, 10% Aloe vera significantly increased mRNA levels for PRDX6. In conclusion, 10.0% Aloe vera improves extracellular matrix distribution in cultured tissues and increases the expression of mRNA for PRDX6 after 6 days in vitro.
Collapse
|
5
|
Neto CC, Soares KL, Padilha RT, Botelho MA, Queiroz DB, Figueiredo JR, de Melo Magalhães-Padilha D. The effect of bioidentical nanostructured progesterone in the in vitro culture of preantral follicles and oocyte maturation. Cell Tissue Res 2020; 382:657-664. [PMID: 32696218 DOI: 10.1007/s00441-020-03233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
This study evaluated the effects of bioidentical nanostructured progesterone alone or in association with human chorionic gonadotropin (hCG) on the in vitro survival and development of preantral follicles (experiment 1) and oocyte maturation (experiment 2). Bioidentical hormones have a molecular structure identical with that of endogenous hormones; nanostructured substances refer to those reduced to a nanoscale. In experiment 1, fragments of goat ovarian tissue were cultured for 7 days in α-MEM+ alone or supplemented with nanoprogesterone (MEM+ + P4) or P4 and hCG (MEM+ + P4 + hCG). In experiment 2, two mediums of oocyte in vitro maturation (IVM) were compared. Medium 1 consisted of TCM 199+ + LH, and medium 2 consisted of TCM 199+ with nanoprogesterone and hCG. The MEM+ + P4 + hCG treatment showed the lowest percentage of follicular survival after 7 days of culture. MEM+ + P4 and MEM+ + P4 + hCG treatments showed higher percentage of follicular activation than MEM+. In experiment 2, there were no differences between mediums 1 and 2 for all endpoints evaluated. In conclusion, the addition of nanoprogesterone is advisable for in vitro culture of preantral follicles and oocyte maturation. However, the association of nanoprogesterone with hCG causes the cellular death of initial follicles but shows efficacy in IVM.
Collapse
Affiliation(s)
- Carlos Cordeiro Neto
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Kadja Lopes Soares
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Rodrigo Tenório Padilha
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Marco Antônio Botelho
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Dinalva Brito Queiroz
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, Ceará, 60740-000, Brazil
| | - Deborah de Melo Magalhães-Padilha
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil.
| |
Collapse
|
6
|
Ferreira ACA, Sá NAR, Cadenas J, Correia HHV, Guerreiro DD, Alves BG, Lima LF, Celestino JJH, Rodrigues APPR, Gastal EL, Figueiredo JR. Pituitary porcine FSH, and recombinant bovine and human FSH differentially affect growth and relative abundances of mRNA transcripts of preantral and early developing antral follicles in goats. Anim Reprod Sci 2020; 219:106461. [PMID: 32828391 DOI: 10.1016/j.anireprosci.2020.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Three different sources of FSH (porcine pituitary, pFSH; recombinant bovine, rbFSH; and recombinant human, rhFSH) were compared during in vitro culture of preantral and early antral follicles of goats for 18 days. Treatments were: base medium supplemented with no FSH (control), 10, 50, or 100 mIU/mL pFSH (pFSH10, pFSH50, and pFSH100, respectively), 100 ng/mL rbFSH (rbFSH), and 50 mIU/mL rhFSH (rhFSH). There were evaluations of follicle morphology, antrum formation, growth rate, estradiol production, oocyte viability and chromatin configuration, and follicle wall relative abundance of mRNA transcript for MMP-9, TIMP-2, CYP17, CYP19A1, FSHR, Insulin-R, and BAX/BCL-2 ratio. Follicle degeneration rates were similar among all treatment groups at the end of culturing. When there were treatments with pFSH, however, there was a lesser (P < 0.05) percentage of intact follicles and estradiol production, and greater (P < 0.05) extrusion rates. Furthermore, with only pFSH10 (antral follicles) and pFSH100 (preantral and antral follicles) treatments, there was a lesser (P < 0.05) follicle growth. For preantral follicles, when there was addition of pFSH10, pFSH100, and rhFSH there was lesser (P < 0.05) oocyte meiotic resumption compared to control and rbFSH treatments. For antral follicles, when there were treatments with rhFSH and pFSH10 there was greater (P = 0.08 - P < 0.05) oocyte maturation. In conclusion, the source of FSH differentially affected gene expression, as indicated by mRNA abundances, and follicular dynamics of preantral and antral follicles in vitro. Addition of FSH during the in vitro culture improved the developmental outcomes only for antral follicles.
Collapse
Affiliation(s)
- Anna Clara A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Hudson H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Denise D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, GO, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Juliana J H Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape, CE, Brazil
| | - Ana Paula P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Jose R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
7
|
Bezerra FTG, Lima FEO, Paulino LRFM, Silva BR, Silva AWB, Souza ALP, van den Hurk R, Silva JRV. In vitro culture of secondary follicles and prematuration of cumulus-oocyte complexes from antral follicles increase the levels of maturation-related transcripts in bovine oocytes. Mol Reprod Dev 2019; 86:1874-1886. [PMID: 31621988 DOI: 10.1002/mrd.23284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022]
Abstract
This study evaluates the levels of messenger RNA (mRNA) for eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1 in oocytes from secondary and antral follicles at different stages of development. The effects of in vitro culture, in vitro prematuration, and in vitro maturation on the expression of these genes on oocytes were also analyzed. The results showed that mRNA levels for H1FOO, GDF9, and PARN were higher in oocytes from small, medium, and large antral follicles, respectively, than those seen in secondary follicles. Oocytes from small, medium, and large antral follicles had higher levels of CCNB1 than oocytes from secondary follicles. Oocytes from cultured secondary follicles had higher levels of GDF9, CMOS, PARN, eIF4E, CCNB1, and H1FOO than before culture. Prematured oocytes from small antral follicles had higher levels of mRNA for GDF9, PARN, and eIF4E than before culture. In addition, higher levels of cMOS and H1FOO were identified in prematured oocytes from medium antral follicles. In conclusion, follicular growth is associated with an increase in the expression of H1FOO, GDF9, CCNB1, and PARN. The culture of secondary follicles, prematuration, and maturation of oocytes from antral follicles increase the expression of eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1.
Collapse
Affiliation(s)
- Francisco Taiã G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Francisco Edilcarlos O Lima
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Laís Rayani F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Ana Liza P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Robert van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - José Roberto V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| |
Collapse
|
8
|
Mbemya GT, de Sá NAR, Guerreiro DD, de Sousa FGC, Nguedia SN, Alves BG, Santos FW, Pessoa ODL, Comizzoli P, Figueiredo JR, Rodrigues APR. Early ovine preantral follicles have a potential to grow until antral stage in two-step culture system in the presence of aqueous extract of Justicia insularis. Reprod Domest Anim 2019; 54:1121-1130. [PMID: 31145489 DOI: 10.1111/rda.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine whether preantral follicles cultured in vitro for 7 days within ovine ovarian cortical strips could be isolated at the secondary follicles (SF) and grown until antral stage during an additional 6 days period of in vitro culture in the presence of aqueous extract of Justicia insularis. Fresh ovarian fragments from 16 adult sheep were fixed for histological analysis (Control 1) or in vitro cultured individually in α-MEM+ supplemented with 0.3 mg/ml J. insularis (Step 1) for 7 days. Part of the fragments then were fixed for histological analysis (in vitro culture group). Remaining fragments were exposed stepwise to increasing trehalose concentrations before immediate isolation of SF and viability assessment (Control 2) or after 6 days of culture in α-MEM++ supplemented with 0.3 mg/ml J. insularis (Step 2). In Step 1, percentage of follicular activation was 80%. In Step 2, a significant increase (p < 0.05) in follicular diameter and antrum formation within 6 days in vitro culture of isolated follicles was achieved. The total antioxidant capacity from both steps significantly increase (p < 0.05) from day 2 to day 6. Confocal analysis of oocytes showed 57.14% oocytes with homogeneous distribution and 42.86% with peri-cortical distribution. In conclusion, SF can be successfully isolated from sheep ovarian cortex after 7 days of culture and are capable of surviving and forming an antral cavity if cultured in vitro for an additional 6 days in the presence of 0.3 mg/ml J. insularis.
Collapse
Affiliation(s)
- Gildas Tetaping Mbemya
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| | - Denise Damasceno Guerreiro
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| | - Francisca Geovania Canafístula de Sousa
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| | - Sylvain Njina Nguedia
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| | - Benner Geraldo Alves
- Laboratory of Biology of Reproduction, Federal University of Uberlândia, Uberlândia, Brazil
| | - Francielli Weber Santos
- Laboratory of Reproduction Biotechnology (Biotech), State of University of Pampa, Uruguaiana, Brazil
| | | | - Pierre Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| | - Ana Paula Ribeiro Rodrigues
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), Faculty of Veterinary (FAVET), State University of Ceará, Fortaleza, Brazil
| |
Collapse
|