1
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Quantifying maxillary development in chimpanzees and humans: An analysis of prognathism and orthognathism at the morphological and microscopic scales. J Hum Evol 2021; 157:103031. [PMID: 34246049 DOI: 10.1016/j.jhevol.2021.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Facial orientation (projection and degree of prognathism) and form in hominins is highly variable, likely related to evolutionary modifications of the microscopic process of bone modeling (the simultaneous cellular activities of bone formation and resorption) during ontogeny. However, in anteriorly projected faces such as those of early hominins, little is known about the link between bone modeling and facial developmental patterns. Similarly, these aspects have been infrequently investigated in extant great apes. In this study, quantitative methods were applied to a cross-sectional ontogenetic sample of 33 chimpanzees (Pan troglodytes verus) and 59 modern humans (Homo sapiens) to compare the development of maxillary prognathism to orthognathism at both microscopic and macroscopic (or morphological) scales using surface histology and geometric morphometric techniques. Chimpanzees express on average lower amounts of bone resorption than humans on the maxillary periosteum throughout ontogeny; however, the premaxilla is consistently resorbed from early stages on. The presence of bone resorption in the chimpanzee premaxilla, such as that seen in some early hominins, suggests a more ape-like pattern of maxillary bone modeling in these specimens. However, this shows that similarities in bone modeling patterns can lead to variations in shape, suggesting that other aspects of facial growth (such as modifications of rates and timings of development, as well as sutural growth) also played a crucial role in facial evolution.
Collapse
|
3
|
Torres-Tamayo N, Martelli S, Schlager S, García-Martínez D, Sanchis-Gimeno JA, Mata-Escolano F, Nalla S, Ogihara N, Oishi M, Bastir M. Assessing thoraco-pelvic covariation in Homo sapiens and Pan troglodytes: A 3D geometric morphometric approach. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:514-534. [PMID: 32864759 DOI: 10.1002/ajpa.24103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Understanding thoraco-pelvic integration in Homo sapiens and their closest living relatives (genus Pan) is of great importance within the context of human body shape evolution. However, studies assessing thoraco-pelvic covariation across Hominoidea species are scarce, although recent research would suggest shared covariation patterns in humans and chimpanzees but also species-specific features, with sexual dimorphism and allometry influencing thoraco-pelvic covariation in these taxa differently. MATERIAL AND METHODS N = 30 adult H. sapiens and N = 10 adult Pan troglodytes torso 3D models were analyzed using 3D geometric morphometrics and linear measurements. Effects of sexual dimorphism and allometry on thoraco-pelvic covariation were assessed via regression analyses, and patterns of thoraco-pelvic covariation in humans and chimpanzees were computed via Two-Block Partial Least Squares analyses. RESULTS Results confirm the existence of common aspects of thoraco-pelvic covariation in humans and chimpanzees, and also species-specific covariation in H. sapiens that is strongly influenced by sexual dimorphism and allometry. Species-specific covariation patterns in chimpanzees could not be confirmed because of the small sample size, but metrics point to a correspondence between the most caudal ribs and iliac crest morphology that would be irrespective of sex. CONCLUSIONS This study suggests that humans and chimpanzees share common aspects of thoraco-pelvic covariation but might differ in others. In humans, torso integration is strongly influenced by sexual dimorphism and allometry, whilst in chimpanzees it may not be. This study also highlights the importance not only of torso widths but also of torso depths when describing patterns of thoraco-pelvic covariation in primates. Larger samples are necessary to support these interpretations.
Collapse
Affiliation(s)
- Nicole Torres-Tamayo
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.,GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Sandra Martelli
- UCL Centre for Integrative Anatomy (CIA), Department of Cell and Developmental Biology, Faculty of Life Sciences, London, UK
| | - Stefan Schlager
- Biological Anthropology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel García-Martínez
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | | | | | - Shahed Nalla
- GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain.,Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Naomichi Ogihara
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Motoharu Oishi
- Laboratory of Anatomy 1, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Markus Bastir
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Jung H, Simons E, von Cramon-Taubadel N. Ontogenetic changes in magnitudes of integration in the macaque skull. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:76-88. [PMID: 32803773 DOI: 10.1002/ajpa.24119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Magnitudes of morphological integration may constrain or facilitate craniofacial shape variation. The aim of this study was to analyze how the magnitude of integration in the skull of Macaca fascicularis changes throughout ontogeny in relation to developmental and/or functional modules. MATERIALS AND METHODS Geometric morphometric methods were used to analyze the magnitude of integration in the macaque cranium and mandible in 80 juvenile and 40 adult M. fascicularis specimens. Integration scores in skull modules were calculated using integration coefficient of variation (ICV) of eigenvalues based on a resampling procedure. Resultant ICV scores between the skull as a whole, and developmental and/or functional modules were compared using Mann-Whitney U tests. RESULTS Results showed that most skull modules were more tightly integrated than the skull as a whole, with the exception of the chondrocranium in juveniles without canines, the chondrocranium/face complex and the mandibular corpus in adults, and the mandibular ramus in all juveniles. The chondrocranium/face and face/mandibular corpus complexes were more tightly integrated in juveniles than adults, possibly reflecting the influences of early brain growth/development, and the changing functional demands of infant suckling and later masticatory loading. This is also supported by the much higher integration of the mandibular ramus in adults compared with juveniles. DISCUSSION Magnitudes of integration in skull modules reflect developmental/functional mechanisms in M. fascicularis. However, the relationship between "evolutionary flexibility" and developmental/functional mechanisms was not direct or simple, likely because of the complex morphology, multifunctionality, and various ossification origins of the skull.
Collapse
Affiliation(s)
- Hyunwoo Jung
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Evan Simons
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
5
|
Torres-Tamayo N, Schlager S, García-Martínez D, Sanchis-Gimeno JA, Nalla S, Ogihara N, Oishi M, Martelli S, Bastir M. Three-dimensional geometric morphometrics of thorax-pelvis covariation and its potential for predicting the thorax morphology: A case study on Kebara 2 Neandertal. J Hum Evol 2020; 147:102854. [PMID: 32805525 DOI: 10.1016/j.jhevol.2020.102854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022]
Abstract
The skeletal torso is a complex structure of outstanding importance in understanding human body shape evolution, but reconstruction usually entails an element of subjectivity as researchers apply their own anatomical expertise to the process. Among different fossil reconstruction methods, 3D geometric morphometric techniques have been increasingly used in the last decades. Two-block partial least squares analysis has shown great potential for predicting missing elements by exploiting the covariation between two structures (blocks) in a reference sample: one block can be predicted from the other one based on the strength of covariation between blocks. The first aim of this study is to test whether this predictive approach can be used for predicting thorax morphologies from pelvis morphologies within adult Homo sapiens reference samples with known covariation between the thorax and the pelvis. The second aim is to apply this method to Kebara 2 Neandertal (Israel, ∼60 ka) to predict its thorax morphology using two different pelvis reconstructions as predictors. We measured 134 true landmarks, 720 curve semilandmarks, and 160 surface semilandmarks on 60 3D virtual torso models segmented from CT scans. We conducted three two-block partial least squares analyses between the thorax (block 1) and the pelvis (block 2) based on the H. sapiens reference samples after performing generalized Procrustes superimposition on each block separately. Comparisons of these predictions in full shape space by means of Procrustes distances show that the male-only predictive model yields the most reliable predictions within modern humans. In addition, Kebara 2 thorax predictions based on this model concur with the thorax morphology proposed for Neandertals. The method presented here does not aim to replace other techniques, but to rather complement them through quantitative prediction of a virtual 'scaffold' to articulate the thoracic fossil elements, thus extending the potential of missing data estimation beyond the methods proposed in previous works.
Collapse
Affiliation(s)
- Nicole Torres-Tamayo
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain; GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Av. Blasco Ibanez, 15, E-46010, Valencia, Spain.
| | - Stefan Schlager
- Biological Anthropology, Faculty of Medicine, University of Freiburg, Hebelstr 29, D-79104, Freiburg, Germany
| | - Daniel García-Martínez
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain; Centro Nacional de Investigación Sobre La Evolución Humana (CENIEH), Avenida de La Sierra de Atapuerca 3, 09002, Burgos, Spain
| | - Juan Alberto Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, University of Valencia, Av. Blasco Ibanez, 15, E-46010, Valencia, Spain
| | - Shahed Nalla
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, Gauteng, South Africa
| | - Naomichi Ogihara
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motoharu Oishi
- Laboratory of Anatomy 1, School of Veterinary Medicine, Azabu University, Kanagawa, 252-5201, Japan
| | - Sandra Martelli
- UCL Centre for Integrative Anatomy (CIA), Department of Cell and Developmental Biology, Faculty of Life Sciences, Gower Street, WC1E 6BT, London, UK
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (CSIC), J.G. Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
6
|
Pereira-Pedro AS, Bruner E, Gunz P, Neubauer S. A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J Hum Evol 2020; 142:102770. [DOI: 10.1016/j.jhevol.2020.102770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
7
|
Gunz P, Kozakowski S, Neubauer S, Le Cabec A, Kullmer O, Benazzi S, Hublin JJ, Begun DR. Skull reconstruction of the late Miocene ape Rudapithecus hungaricus from Rudabánya, Hungary. J Hum Evol 2020; 138:102687. [DOI: 10.1016/j.jhevol.2019.102687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|