1
|
Zhao S, Li Z, Zhang Q, Zhang Y, Zhang J, Fan G, Cao X, Jiu Y. Discovery of Trametinib as an orchestrator for cytoskeletal vimentin remodeling. J Mol Cell Biol 2024; 16:mjae009. [PMID: 38429984 PMCID: PMC11393047 DOI: 10.1093/jmcb/mjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
The dynamic remodeling of the cytoskeletal network of vimentin intermediate filaments supports various cellular functions, including cell morphology, elasticity, migration, organelle localization, and resistance against mechanical or pathological stress. Currently available chemicals targeting vimentin predominantly induce network reorganization and shrinkage around the nucleus. Effective tools for long-term manipulation of vimentin network dispersion in living cells are still lacking, limiting in-depth studies on vimentin function and potential therapeutic applications. Here, we verified that a commercially available small molecule, trametinib, is capable of inducing spatial spreading of the cellular vimentin network without affecting its transcriptional or Translational regulation. Further evidence confirmed its low cytotoxicity and similar effects on different cell types. Importantly, Trametinib has no impact on the other two cytoskeletal systems, actin filaments and the microtubule network. Moreover, Trametinib regulates vimentin network dispersion rapidly and efficiently, with effects persisting for up to 48 h after drug withdrawal. We also ruled out the possibility that Trametinib directly affects the phosphorylation level of vimentin. In summary, we identified an unprecedented regulator Trametinib, which is capable of spreading the vimentin network toward the cell periphery, and thus complemented the existing repertoire of vimentin remodeling drugs in the field of cytoskeletal research.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifang Li
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaobao Cao
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Huynh TN, Toperzer J, Scherer A, Gumina A, Brunetti T, Mansour MK, Markovitz DM, Russo BC. Vimentin regulates mitochondrial ROS production and inflammatory responses of neutrophils. Front Immunol 2024; 15:1416275. [PMID: 39139560 PMCID: PMC11319119 DOI: 10.3389/fimmu.2024.1416275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils are not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jody Toperzer
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Scherer
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Anne Gumina
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Tonya Brunetti
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael K. Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
3
|
Renganathan B, Moore A, Yeo WH, Petruncio A, Ackerman D, Wiegel A, Pasolli HA, Xu CS, Shtengel G, Hess HF, Serpinskaya AS, Zhang HF, Lippincott-Schwartz J, Gelfand VI. Transport and Organization of Individual Vimentin Filaments Within Dense Networks Revealed by Single Particle Tracking and 3D FIB-SEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598346. [PMID: 38915582 PMCID: PMC11195130 DOI: 10.1101/2024.06.10.598346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Single-particle tracking demonstrates that individual filaments in bundles of vimentin intermediate filaments are transported in the cytoplasm by motor proteins along microtubules. Furthermore, using 3D FIB-SEM the authors showed that vimentin filament bundles are loosely packed and coaligned with microtubules. Vimentin intermediate filaments (VIFs) form complex, tight-packed networks; due to this density, traditional ensemble labeling and imaging approaches cannot accurately discern single filament behavior. To address this, we introduce a sparse vimentin-SunTag labeling strategy to unambiguously visualize individual filament dynamics. This technique confirmed known long-range dynein and kinesin transport of peripheral VIFs and uncovered extensive bidirectional VIF motion within the perinuclear vimentin network, a region we had thought too densely bundled to permit such motility. To examine the nanoscale organization of perinuclear vimentin, we acquired high-resolution electron microscopy volumes of a vitreously frozen cell and reconstructed VIFs and microtubules within a ~50 μm3 window. Of 583 VIFs identified, most were integrated into long, semi-coherent bundles that fluctuated in width and filament packing density. Unexpectedly, VIFs displayed minimal local co-alignment with microtubules, save for sporadic cross-over sites that we predict facilitate cytoskeletal crosstalk. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Alyson Petruncio
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aubrey Wiegel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - The CellMap Team
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, Rockefeller University, New York, NY 10021, USA
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Anna S Serpinskaya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA
| | | | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Huynh TN, Toperzer J, Scherer A, Gumina A, Brunetti T, Mansour MK, Markovitz DM, Russo BC. Vimentin regulates mitochondrial ROS production and inflammatory responses of neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589146. [PMID: 38659904 PMCID: PMC11042233 DOI: 10.1101/2024.04.11.589146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils is not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.
Collapse
|
5
|
Coelho-Rato LS, Parvanian S, Modi MK, Eriksson JE. Vimentin at the core of wound healing. Trends Cell Biol 2024; 34:239-254. [PMID: 37748934 DOI: 10.1016/j.tcb.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
As a member of the large family of intermediate filaments (IFs), vimentin has emerged as a highly dynamic and versatile cytoskeletal protein involved in many key processes of wound healing. It is well established that vimentin is involved in epithelial-mesenchymal transition (EMT) during wound healing and metastasis, during which epithelial cells acquire more dynamic and motile characteristics. Moreover, vimentin participates in multiple cellular activities supporting growth, proliferation, migration, cell survival, and stress resilience. Here, we explore the role of vimentin at each phase of wound healing, with focus on how it integrates different signaling pathways and protects cells in the fluctuating and challenging environments that characterize a healing tissue.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Mayank Kumar Modi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
6
|
Carpo N, Tran V, Biancotti JC, Cepeda C, Espinosa-Jeffrey A. Space Flight Enhances Stress Pathways in Human Neural Stem Cells. Biomolecules 2024; 14:65. [PMID: 38254665 PMCID: PMC10813251 DOI: 10.3390/biom14010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Mammalian cells have evolved to function under Earth's gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth's gravity. We found that most of these cells survived the space flight and self-renewed. Yet, some showed enhanced stress responses as well as autophagy-like behavior. To ascertain if the secretome from SPC-flown NSCs contained molecules inducing these responses, we incubated naïve, non-starved NSCs in a medium containing SPC-NSC secretome. We found a four-fold increase in stress responses. Proteomic analysis of the secretome revealed that the protein of the highest content produced by SPC-NSCs was secreted protein acidic and rich in cysteine (SPARC), which induces endoplasmic reticulum (ER) stress, resulting in the cell's demise. These results offer novel knowledge on the response of neural cells, particularly NSCs, subjected to space microgravity. Moreover, some secreted proteins have been identified as microgravity sensing, paving a new venue for future research aiming at targeting the SPARC metabolism. Although we did not establish a direct relationship between microgravity-induced stress and SPARC as a potential marker, these results represent the first step in the identification of gravity sensing molecules as targets to be modulated and to design effective countermeasures to mitigate intracranial hypertension in astronauts using structure-based protein design.
Collapse
Affiliation(s)
- Nicholas Carpo
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | - Victoria Tran
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | - Juan Carlos Biancotti
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Carlos Cepeda
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | | |
Collapse
|
7
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
8
|
Falcón-Cama V, Montero-González T, Acosta-Medina EF, Guillen-Nieto G, Berlanga-Acosta J, Fernández-Ortega C, Alfonso-Falcón A, Gilva-Rodríguez N, López-Nocedo L, Cremata-García D, Matos-Terrero M, Pentón-Rol G, Valdés I, Oramas-Díaz L, Suarez-Batista A, Noa-Romero E, Cruz-Sui O, Sánchez D, Borrego-Díaz AI, Valdés-Carreras JE, Vizcaino A, Suárez-Alba J, Valdés-Véliz R, Bergado G, González MA, Hernandez T, Alvarez-Arzola R, Ramírez-Suárez AC, Casillas-Casanova D, Lemos-Pérez G, Blanco-Águila OR, Díaz A, González Y, Bequet-Romero M, Marín-Prida J, Hernández-Perera JC, Del Rosario-Cruz L, Marin-Díaz AP, González-Bravo M, Borrajero I, Acosta-Rivero N. Evidence of SARS-CoV-2 infection in postmortem lung, kidney, and liver samples, revealing cellular targets involved in COVID-19 pathogenesis. Arch Virol 2023; 168:96. [PMID: 36842152 PMCID: PMC9968404 DOI: 10.1007/s00705-023-05711-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/29/2022] [Indexed: 02/27/2023]
Abstract
There is an urgent need to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions involved in virus spread and pathogenesis, which might contribute to the identification of new therapeutic targets. In this study, we investigated the presence of SARS-CoV-2 in postmortem lung, kidney, and liver samples of patients who died with coronavirus disease (COVID-19) and its relationship with host factors involved in virus spread and pathogenesis, using microscopy-based methods. The cases analyzed showed advanced stages of diffuse acute alveolar damage and fibrosis. We identified the SARS-CoV-2 nucleocapsid (NC) in a variety of cells, colocalizing with mitochondrial proteins, lipid droplets (LDs), and key host proteins that have been implicated in inflammation, tissue repair, and the SARS-CoV-2 life cycle (vimentin, NLRP3, fibronectin, LC3B, DDX3X, and PPARγ), pointing to vimentin and LDs as platforms involved not only in the viral life cycle but also in inflammation and pathogenesis. SARS-CoV-2 isolated from a patient´s nasal swab was grown in cell culture and used to infect hamsters. Target cells identified in human tissue samples included lung epithelial and endothelial cells; lipogenic fibroblast-like cells (FLCs) showing features of lipofibroblasts such as activated PPARγ signaling and LDs; lung FLCs expressing fibronectin and vimentin and macrophages, both with evidence of NLRP3- and IL1β-induced responses; regulatory cells expressing immune-checkpoint proteins involved in lung repair responses and contributing to inflammatory responses in the lung; CD34+ liver endothelial cells and hepatocytes expressing vimentin; renal interstitial cells; and the juxtaglomerular apparatus. This suggests that SARS-CoV-2 may directly interfere with critical lung, renal, and liver functions involved in COVID-19-pathogenesis.
Collapse
Affiliation(s)
- Viviana Falcón-Cama
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba. .,Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba.
| | | | - Emilio F Acosta-Medina
- Center for Advanced Studies of Cuba, Havana, Cuba. .,Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba.
| | - Gerardo Guillen-Nieto
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba.,Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba
| | - Jorge Berlanga-Acosta
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba.,Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba
| | - Celia Fernández-Ortega
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba.,Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba
| | | | - Nathalie Gilva-Rodríguez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Lilianne López-Nocedo
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Daina Cremata-García
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Mariuska Matos-Terrero
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba.,Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba
| | - Iris Valdés
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Leonardo Oramas-Díaz
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Anamarys Suarez-Batista
- Department of Virology, Civilian Defense Scientific Research Center (CICDC), Havana, Mayabeque, Cuba
| | - Enrique Noa-Romero
- Department of Virology, Civilian Defense Scientific Research Center (CICDC), Havana, Mayabeque, Cuba
| | - Otto Cruz-Sui
- Department of Virology, Civilian Defense Scientific Research Center (CICDC), Havana, Mayabeque, Cuba
| | | | | | | | | | - José Suárez-Alba
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Rodolfo Valdés-Véliz
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Gretchen Bergado
- Direction of Immunology and Immunotherapy, Center of Molecular Immunology, Havana, Cuba
| | - Miguel A González
- Direction of Immunology and Immunotherapy, Center of Molecular Immunology, Havana, Cuba
| | - Tays Hernandez
- Direction of Immunology and Immunotherapy, Center of Molecular Immunology, Havana, Cuba
| | - Rydell Alvarez-Arzola
- Direction of Immunology and Immunotherapy, Center of Molecular Immunology, Havana, Cuba
| | - Anna C Ramírez-Suárez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Dionne Casillas-Casanova
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Gilda Lemos-Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | | | | | | | - Mónica Bequet-Romero
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31 be/ 158 and 190, Cubanacán, Playa, PO Box 6162, 10699, Havana, Cuba
| | - Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | | | | | - Alina P Marin-Díaz
- International Orthopedic Scientific Complex 'Frank Pais Garcia', Havana, Cuba
| | - Maritza González-Bravo
- Latin American School of Medicine, Calle Panamericana Km 3 1/2, Playa, 11600, Havana, Cuba
| | | | - Nelson Acosta-Rivero
- Center for Protein Studies, Department of Biochemistry, Faculty of Biology, University of Habana, Calle 25 entre J e I, #455, Plaza de la Revolucion, 10400, Havana, Cuba. .,Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Molecular Virology, University of Heidelberg, Medical Faculty Heidelberg, INF 344, GO.1, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Transcriptome Analysis Reveals Vimentin-Induced Disruption of Cell-Cell Associations Augments Breast Cancer Cell Migration. Cells 2022; 11:cells11244035. [PMID: 36552797 PMCID: PMC9776984 DOI: 10.3390/cells11244035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In advanced metastatic cancers with reduced patient survival and poor prognosis, expression of vimentin, a type III intermediate filament protein is frequently observed. Vimentin appears to suppress epithelial characteristics and augments cell migration but the molecular basis for these changes is not well understood. Here, we have ectopically expressed vimentin in MCF-7 and investigated its genomic and functional implications. Vimentin changed the cell shape by decreasing major axis, major axis angle and increased cell migration, without affecting proliferation. Vimentin downregulated major keratin genes KRT8, KRT18 and KRT19. Transcriptome-coupled GO and KEGG analyses revealed that vimentin-affected genes were linked to either cell-cell/cell-ECM or cell cycle/proliferation specific pathways. Using shRNA mediated knockdown of vimentin in two cell types; MCF-7FV (ectopically expressing) and MDA-MB-231 (endogenously expressing), we identified a vimentin-specific signature consisting of 13 protein encoding genes (CDH5, AXL, PTPRM, TGFBI, CDH10, NES, E2F1, FOXM1, CDC45, FSD1, BCL2, KIF26A and WISP2) and two long non-coding RNAs, LINC00052 and C15ORF9-AS1. CDH5, an endothelial cadherin, which mediates cell-cell junctions, was the most downregulated protein encoding gene. Interestingly, downregulation of CDH5 by shRNA significantly increased cell migration confirming our RNA-Seq data. Furthermore, presence of vimentin altered the lamin expression in MCF-7. Collectively, we demonstrate, for the first time, that vimentin in breast cancer cells could change nuclear architecture by affecting lamin expression, which downregulates genes maintaining cell-cell junctions resulting in increased cell migration.
Collapse
|
10
|
Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: Good alone, bad together. Semin Cancer Biol 2022; 86:816-826. [PMID: 34953942 PMCID: PMC9213573 DOI: 10.1016/j.semcancer.2021.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jordan T Pietz
- Department of Creative Services, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
11
|
Thwarting of Lphn3 Functions in Cell Motility and Signaling by Cancer-Related GAIN Domain Somatic Mutations. Cells 2022; 11:cells11121913. [PMID: 35741042 PMCID: PMC9221416 DOI: 10.3390/cells11121913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer progression relies on cellular transition states accompanied by changes in the functionality of adhesion molecules. The gene for adhesion G protein-coupled receptor latrophilin-3 (aGPCR Lphn3 or ADGRL3) is targeted by tumor-specific somatic mutations predominantly affecting the conserved GAIN domain where most aGPCRs are cleaved. However, it is unclear how these GAIN domain-altering mutations impact Lphn3 function. Here, we studied Lphn3 cancer-related mutations as a proxy for revealing unknown GAIN domain functions. We found that while intra-GAIN cleavage efficiency was unaltered, most mutations produced a ligand-specific impairment of Lphn3 intercellular adhesion profile paralleled by an increase in cell-matrix actin-dependent contact structures for cells expressing the select S810L mutation. Aberrant remodeling of the intermediate filament vimentin, which was found to coincide with Lphn3-induced modification of nuclear morphology, had less impact on the nuclei of S810L expressing cells. Notoriously, receptor signaling through G13 protein was deficient for all variants bearing non-homologous amino acid substitutions, including the S810L variant. Analysis of cell migration paradigms revealed a non-cell-autonomous impairment in collective cell migration indistinctly of Lphn3 or its cancer-related variants expression, while cell-autonomous motility was potentiated in the presence of Lphn3, but this effect was abolished in S810L GAIN mutant-expressing cells. These data identify the GAIN domain as an important regulator of Lphn3-dependent cell motility, thus furthering our understanding of cellular and molecular events linking Lphn3 genetic somatic mutations to cancer-relevant pathogenesis mechanisms.
Collapse
|
12
|
Chadet S, Allard J, Brisson L, Lopez-Charcas O, Lemoine R, Heraud A, Lerondel S, Guibon R, Fromont G, Le Pape A, Angoulvant D, Jiang LH, Murrell-Lagnado R, Roger S. P2x4 receptor promotes mammary cancer progression by sustaining autophagy and associated mesenchymal transition. Oncogene 2022; 41:2920-2931. [DOI: 10.1038/s41388-022-02297-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
|
13
|
Host cytoskeletal vimentin serves as a structural organizer and an RNA-binding protein regulator to facilitate Zika viral replication. Proc Natl Acad Sci U S A 2022; 119:2113909119. [PMID: 35193960 PMCID: PMC8872754 DOI: 10.1073/pnas.2113909119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/15/2023] Open
Abstract
We discovered a dual role of vimentin underlying Zika virus (ZIKV) replication. The vimentin network reorganizes to surround the replication complex. Depletion of vimentin resulted in drastic segregation of viral proteins and subsequent defective infection, indicating its function as an “organizer” that ensures the concentration of all necessary factors for high replication efficacy. With omics analysis, we prove that vimentin also functions as a “regulator” that dominates RNA-binding proteins during infection. These two roles complement one another to make an integrated view of vimentin in regulating ZIKV infection. Collectively, our study fills the long-term gap in our knowledge of the cellular function of intermediate filaments in addition to structural support and provides a potential target for ZIKV therapy. Emerging microbe infections, such as Zika virus (ZIKV), pose an increasing threat to human health. Investigations on ZIKV replication have revealed the construction of replication complexes (RCs), but the role of cytoskeleton in this process is largely unknown. Here, we investigated the function of cytoskeletal intermediate filament protein vimentin in the life cycle of ZIKV infection. Using advanced imaging techniques, we uncovered that vimentin filaments undergo drastic reorganization upon viral protein synthesis to form a perinuclear cage-like structure that embraces and concentrates RCs. Genetic removal of vimentin markedly disrupted the integrity of RCs and resulted in fragmented subcellular dispersion of viral proteins. This led to reduced viral genome replication, viral protein production, and release of infectious virions, without interrupting viral binding and entry. Furthermore, mass spectrometry and RNA-sequencing screens identified interactions and interplay between vimentin and hundreds of endoplasmic reticulum (ER)-resident RNA-binding proteins. Among them, the cytoplasmic-region of ribosome receptor binding protein 1, an ER transmembrane protein that directly binds viral RNA, interacted with and was regulated by vimentin, resulting in modulation of ZIKV replication. Together, the data in our work reveal a dual role for vimentin as a structural element for RC integrity and as an RNA-binding-regulating hub during ZIKV infection, thus unveiling a layer of interplay between Zika virus and host cell.
Collapse
|
14
|
Kocsis Á, Pasztorek M, Rossmanith E, Djinovic Z, Mayr T, Spitz S, Zirath H, Ertl P, Fischer MB. Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B. J Biosci Bioeng 2021; 132:310-320. [PMID: 34175199 DOI: 10.1016/j.jbiosc.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022]
Abstract
Owing to their self-renewal and multi-lineage differentiation capability, mesenchymal stem cells (MSCs) hold enormous potential in regenerative medicine. A prerequisite for a successful MSC therapy is the rigorous investigation of their function after in vitro cultivation. Damages introduced to mitochondria during cultivation adversely affect MSCs function and can determine their fate. While it has been shown that microtubules and vimentin intermediate filaments are important for mitochondrial dynamics and active mitochondrial transport within the cytoplasm of MSCs, the role of filamentous actin in this process has not been fully understood yet. To gain a deeper understanding of the interdependence between mitochondrial function and the cytoskeleton, we applied cytochalasin B to disturb the filamentous actin-based cytoskeleton of MSCs. In this study we combined conventional functional assays with a state-of-the-art oxygen sensor-integrated microfluidic device to investigate mitochondrial function. We demonstrated that cytochalasin B treatment at a dose of 16 μM led to a decrease in cell viability with high mitochondrial membrane potential, increased oxygen consumption rate, disturbed fusion and fission balance, nuclear extrusion and perinuclear accumulation of mitochondria. Treatment of MSCs for 48 h ultimately led to nuclear fragmentation, and activation of the intrinsic pathway of apoptotic cell death. Importantly, we could show that mitochondrial function of MSCs can efficiently recover from the damage to the filamentous actin-based cytoskeleton over a period of 24 h. As a result of our study, a causative connection between the filamentous actin-based cytoskeleton and mitochondrial dynamics was demonstrated.
Collapse
Affiliation(s)
- Ágnes Kocsis
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Markus Pasztorek
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Eva Rossmanith
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Zoran Djinovic
- ACMIT Gmbh (Austrian Center for Medical Innovation and Technology), Viktor Kaplan-Straße 2/1, Wiener Neustadt 2700, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9 / II + III, Graz 8010, Austria
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Helene Zirath
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Michael B Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria; Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria.
| |
Collapse
|
15
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
16
|
Kim S, Kim I, Cho W, Oh GT, Park YM. Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Diabetes Metab J 2021; 45:97-108. [PMID: 32602277 PMCID: PMC7850873 DOI: 10.4093/dmj.2019.0198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus are world-wide health problems, and lack of understanding of their linking mechanism is one reason for limited treatment options. We determined if genetic deletion of vimentin, a type 3 intermediate filament, affects obesity and type 2 diabetes mellitus. METHODS We fed vimentin-null (Vim-/-) mice and wild-type mice a high-fat diet (HFD) for 10 weeks and measured weight change, adiposity, blood lipids, and glucose. We performed intraperitoneal glucose tolerance tests and measured CD36, a major fatty acid translocase, and glucose transporter type 4 (GLUT4) in adipocytes from both groups of mice. RESULTS Vim-/- mice fed an HFD showed less weight gain, less adiposity, improved glucose tolerance, and lower serum level of fasting glucose. However, serum triglyceride and non-esterified fatty acid levels were higher in Vim-/- mice than in wild-type mice. Vimentin-null adipocytes showed 41.1% less CD36 on plasma membranes, 27% less uptake of fatty acids, and 50.3% less GLUT4, suggesting defects in intracellular trafficking of these molecules. CONCLUSION We concluded that vimentin deficiency prevents obesity and insulin resistance in mice fed an HFD and suggest vimentin as a central mediator linking obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- SeoYeon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Inyeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
17
|
Gentile D, Berliocchi L, Russo R, Bagetta G, Corasaniti MT. Effects of the autophagy modulators d-limonene and chloroquine on vimentin levels in SH-SY5Y cells. Biochem Biophys Res Commun 2020; 533:764-769. [PMID: 32988589 PMCID: PMC7518972 DOI: 10.1016/j.bbrc.2020.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
The molecular target and mechanism by which d-limonene induces LC3 lipidation and autophagosome formation remain elusive. Here, we report that this monoterpene rapidly enhances Ca2+ levels in SH-SY5Y cells; yet this effect does not lead to calpain- or caspase-mediated proteolysis of α-spectrin, nor calpain activity is required for the established enhancement of LC3-II levels by d-limonene. However, d-limonene rapidly reduced vimentin levels, an unexpected effect also induced by the autophagy inhibitor chloroquine (CQ). The magnitude of vimentin reduction parallels accumulation of LC3-II caused by a brief incubation with d-limonene or CQ. For longer exposure (48 h), d-limonene does not reduce vimentin, nor it increases LC3-II levels; conversely, a clear reduction of vimentin along with a massive accumulation of LC3-II is evident in cells treated with CQ. Vimentin participates in organelle positioning and in other cellular processes that have linked this intermediate filament protein to various diseases, including cancer, inflammatory and autoimmune disorders, and to virus replication and internalization. Our findings suggest an inverse relationship between vimentin reduction and LC3-II accumulation, whose causal link needs to be examined. Further experiments are needed to dissect the role of vimentin reduction in the mechanisms through which CQ impairs fusion of autophagosome with lysosomes as well as in other effects of this drug.
Collapse
Affiliation(s)
- Debora Gentile
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Via Pietro Bucci, 87036, Rende (Cosenza), Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Via Pietro Bucci, 87036, Rende (Cosenza), Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus Universitario "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
18
|
Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci 2020; 10:142. [PMID: 33298183 PMCID: PMC7724827 DOI: 10.1186/s13578-020-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Enterovirus A71 (EVA71) infection continues to remain a vital threat to global public health, especially in the Asia–Pacific region. It is one of the most predominant pathogens that cause hand, foot, and mouth disease (HFMD), which occurs mainly in children below 5 years old. Although EVA71 prevalence has decreased sharply in China with the use of vaccines, epidemiological studies still indicate that EVA71 infection involves severe and even fatal HFMD cases. As a result, it remains more fundamental research into the pathogenesis of EVA71 as well as to develop specific anti-viral therapy. Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis. It involves a variety of biological functions, such as development, cellular differentiation, nutritional starvation, and defense against pathogens. However, accumulating evidence has indicated that EVA71 induces autophagy and hijacks the process of autophagy for their optimal infection during the different stages of life cycle. This review provides a perspective on the emerging evidence that the “positive feedback” between autophagy induction and EVA71 infection, as well as its potential mechanisms. Furthermore, autophagy may be involved in EVA71-induced nervous system impairment through mediating intracranial viral spread and dysregulating host regulator involved self-damage. Autophagy is a promising therapeutic target in EVA71 infection.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yawei Li
- Department of Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Jingfeng Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Liu J, Xie Y, Cui Z, Xia T, Wan L, Zhou H, Zhang P, Zhang Y, Guan F, Liu W, Shi C. Bnip3 interacts with vimentin, an intermediate filament protein, and regulates autophagy of hepatic stellate cells. Aging (Albany NY) 2020; 13:957-972. [PMID: 33290258 PMCID: PMC7834981 DOI: 10.18632/aging.202211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 04/21/2023]
Abstract
Bnip3, which is regulated by Hif-1 in cells under oxygen deprivation, is a death related protein associated with autophagy and apoptosis. Hif-1 was reported to regulate autophagy to activate hepatic stellate cells (HSCs), while the specific molecular mechanism is vague. The possible mechanism of Hif-1 regulating autophagy of HSCs via Bnip3 was explored in this study. Bnip3 was detected in fibrotic liver tissues from humans and mice. Hif-1 was inhibited by chemical inhibitor and Bnip3 was detected in activated HSCs. The co-localization of Bnip3 and LC3B was captured by confocal microscopy and autophagic flow was assessed in Bnip3 siRNA transfected cells. Bnip3 interacted proteins were screened with mass spectrometry. The interaction of Bnip3 and vimentin was detected with co-immunoprecipitation and confocal microscopy. The results showed that Bnip3 was increased in fibrotic liver tissues and activated HSCs. Hif-1 inhibition suppressed Bnip3 expression in activated HSCs. Bnip3 was partially co-localized with autophagosomes and Bnip3 inhibition suppessed autophagy in activated HSCs. Bnip3 interacted with vimentin and Bnip3 expression was inhibited as vimentin was inhibited in activated HSCs. Conclusively, this study indicated that Bnip3 promoted autophagy and activation of HSCs, via interacting with vimentin, an intermediate filament protein with highly abundant expression in HSCs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Hospital Infection Management, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuyu Xie
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhangbo Cui
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tian Xia
- Department of Surgery, Wuhan Third Hospital, Wuhan, PR China
| | - Lu Wan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yijie Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenqi Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
20
|
Morrow CS, Moore DL. Vimentin's side gig: Regulating cellular proteostasis in mammalian systems. Cytoskeleton (Hoboken) 2020; 77:515-523. [PMID: 33190414 DOI: 10.1002/cm.21645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) perform a diverse set of well-known functions including providing structural support for the cell and resistance to mechanical stress, yet recent evidence has revealed unexpected roles for IFs as stress response proteins. Previously, it was shown that the type III IF protein vimentin forms cage-like structures around centrosome-associated proteins destined for degradation, structures referred to as aggresomes, suggesting a role for vimentin in protein turnover. However, vimentin's function at the aggresome has remained largely understudied. In a recent report, vimentin was shown to be dispensable for aggresome formation, but played a critical role in protein turnover at the aggresome through localizing proteostasis-related machineries, such as proteasomes, to the aggresome. Here, we review evidence for vimentin's function in proteostasis and highlight the organismal implications of these findings.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Nuclear Morphological Remodeling in Human Granulocytes Is Linked to Prenylation Independently from Cytoskeleton. Cells 2020; 9:cells9112509. [PMID: 33233551 PMCID: PMC7699803 DOI: 10.3390/cells9112509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear shape modulates cell behavior and function, while aberrant nuclear morphologies correlate with pathological phenotype severity. Nevertheless, functions of specific nuclear morphological features and underlying molecular mechanisms remain poorly understood. Here, we investigate a nucleus-intrinsic mechanism driving nuclear lobulation and segmentation concurrent with granulocyte specification, independently from extracellular forces and cytosolic cytoskeleton contributions. Transcriptomic regulation of cholesterol biosynthesis is equally concurrent with nuclear remodeling. Its putative role as a regulatory element is supported by morphological aberrations observed upon pharmacological impairment of several enzymatic steps of the pathway, most prominently the sterol ∆14-reductase activity of laminB-receptor and protein prenylation. Thus, we support the hypothesis of a nuclear-intrinsic mechanism for nuclear shape control with the putative involvement of the recently discovered GGTase III complex. Such process could be independent from or complementary to the better studied cytoskeleton-based nuclear remodeling essential for cell migration in both physiological and pathological contexts such as immune system function and cancer metastasis.
Collapse
|
22
|
Johnston HE, Samant RS. Alternative systems for misfolded protein clearance: life beyond the proteasome. FEBS J 2020; 288:4464-4487. [PMID: 33135311 DOI: 10.1111/febs.15617] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Protein misfolding is a major driver of ageing-associated frailty and disease pathology. Although all cells possess multiple, well-characterised protein quality control systems to mitigate the toxicity of misfolded proteins, how they are integrated to maintain protein homeostasis ('proteostasis') in health-and how their disintegration contributes to disease-is still an exciting and fast-paced area of research. Under physiological conditions, the predominant route for misfolded protein clearance involves ubiquitylation and proteasome-mediated degradation. When the capacity of this route is overwhelmed-as happens during conditions of acute environmental stress, or chronic ageing-related decline-alternative routes for protein quality control are activated. In this review, we summarise our current understanding of how proteasome-targeted misfolded proteins are retrafficked to alternative protein quality control routes such as juxta-nuclear sequestration and selective autophagy when the ubiquitin-proteasome system is compromised. We also discuss the molecular determinants of these alternative protein quality control systems, attempt to clarify distinctions between various cytoplasmic spatial quality control inclusion bodies (e.g., Q-bodies, p62 bodies, JUNQ, aggresomes, and aggresome-like induced structures 'ALIS'), and speculate on emerging concepts in the field that we hope will spur future research-with the potential to benefit the rational development of healthy ageing strategies.
Collapse
Affiliation(s)
| | - Rahul S Samant
- Signalling Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
23
|
Mancinelli G, Galic M. Exploring the interdependence between self-organization and functional morphology in cellular systems. J Cell Sci 2020; 133:133/13/jcs242479. [PMID: 32620564 DOI: 10.1242/jcs.242479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All living matter is subject to continuous adaptation and functional optimization via natural selection. Consequentially, structures with close morphological resemblance repeatedly appear across the phylogenetic tree. How these designs emerge at the cellular level is not fully understood. Here, we explore core concepts of functional morphology and discuss its cause and consequences, with a specific focus on emerging properties of self-organizing systems as the potential driving force. We conclude with open questions and limitations that are present when studying shape-function interdependence in single cells and cellular ensembles.
Collapse
Affiliation(s)
- Gloria Mancinelli
- 'Cells in Motion' Interfaculty Centre, University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, Medical Faculty, University of Muenster, 49149 Muenster, Germany.,CIM-IMRPS Graduate Program, 48149 Muenster, Germany
| | - Milos Galic
- 'Cells in Motion' Interfaculty Centre, University of Muenster, 48149 Muenster, Germany .,Institute of Medical Physics and Biophysics, Medical Faculty, University of Muenster, 49149 Muenster, Germany
| |
Collapse
|
24
|
Nelsen E, Hobson CM, Kern ME, Hsiao JP, O'Brien Iii ET, Watanabe T, Condon BM, Boyce M, Grinstein S, Hahn KM, Falvo MR, Superfine R. Combined Atomic Force Microscope and Volumetric Light Sheet System for Correlative Force and Fluorescence Mechanobiology Studies. Sci Rep 2020; 10:8133. [PMID: 32424215 PMCID: PMC7234992 DOI: 10.1038/s41598-020-65205-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
The central goals of mechanobiology are to understand how cells generate force and how they respond to environmental mechanical stimuli. A full picture of these processes requires high-resolution, volumetric imaging with time-correlated force measurements. Here we present an instrument that combines an open-top, single-objective light sheet fluorescence microscope with an atomic force microscope (AFM), providing simultaneous volumetric imaging with high spatiotemporal resolution and high dynamic range force capability (10 pN - 100 nN). With this system we have captured lysosome trafficking, vimentin nuclear caging, and actin dynamics on the order of one second per single-cell volume. To showcase the unique advantages of combining Line Bessel light sheet imaging with AFM, we measured the forces exerted by a macrophage during FcɣR-mediated phagocytosis while performing both sequential two-color, fixed plane and volumetric imaging of F-actin. This unique instrument allows for a myriad of novel studies investigating the coupling of cellular dynamics and mechanical forces.
Collapse
Affiliation(s)
- E Nelsen
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - C M Hobson
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M E Kern
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J P Hsiao
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - E T O'Brien Iii
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - T Watanabe
- Deptartment of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - B M Condon
- Deptartment of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, United States
| | - M Boyce
- Deptartment of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, United States
| | - S Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - K M Hahn
- Deptartment of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M R Falvo
- Deptartment of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - R Superfine
- Deptartment of Applied and Materials Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Morrow CS, Porter TJ, Xu N, Arndt ZP, Ako-Asare K, Heo HJ, Thompson EAN, Moore DL. Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit. Cell Stem Cell 2020; 26:558-568.e9. [PMID: 32109376 DOI: 10.1016/j.stem.2020.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
Maintaining a healthy proteome throughout life is critical for proper somatic stem cell function, but the complexities of the stem cell response to increases in damaged or aggregated proteins remain unclear. Here we demonstrate that adult neural stem cells (NSCs) utilize aggresomes to recover from disrupted proteostasis and describe a novel function for the intermediate filament vimentin in proteostasis as a spatial coordinator of proteasomes to the aggresome. In the absence of vimentin, NSCs have a reduced capacity to exit quiescence, a time when NSCs are required to clear a wave of aggregated proteins, and demonstrate an early age-dependent decline in proliferation and neurogenesis. Taken together, these data reveal a significant role of vimentin and aggresomes in the regulation of proteostasis during quiescent NSC activation.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Tiaira J Porter
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Nan Xu
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Kayla Ako-Asare
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Helen J Heo
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | | | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Dom M, Vanden Berghe W, Van Ostade X. Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Med Chem 2020; 11:30-50. [PMID: 33479603 PMCID: PMC7523023 DOI: 10.1039/c9md00296k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The multifunctional antitumor properties of Withaferin A (WA), the manifold studied bioactive compound of the plant Withania somnifera, have been well established in many different in vitro and in vivo cancer models. This undoubtedly has led to a much better insight in the underlying mechanisms of WAs broad antitumor activity range, but also raises additional challenging questions on how all these antitumor properties could be explained on a molecular level. Therefore, a lot of effort was made to characterize the cellular WA target proteins, since these binding events will lead and initiate the observed downstream effects. Based on a proteomic perspective, this review provides novel insights in the molecular chain of events by which WA potentially exercises its antitumor activities. We illustrate that WA triggers multiple cellular stress pathways such as the NRF2-mediated oxidative stress response, the heat shock response and protein translation events and at the same time inhibits these cellular protection mechanisms, driving stressed cancer cells towards a fatal state of collapse. If cancer cells manage to restore homeostasis and survive, a stress-independent WA antitumor response comes into play. These include the known inhibition of cytoskeleton proteins, NFκB pathway inhibition and cell cycle inhibition, among others. This review therefore provides a comprehensive overview which integrates the numerous WA-protein binding partners to formulate a general WA antitumor mechanism.
Collapse
Affiliation(s)
- Martin Dom
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| |
Collapse
|