1
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Kim S, Ochoa K, Melli SE, Yousufzai FAK, Barrera ZD, Williams AA, McIntyre G, Delgado E, Bolish JN, Macleod CM, Boghos M, Lens HP, Ramos AG, Wilson VB, Maloney K, Padron ZM, Khan AH, Blanco RE, Soto I. Disruptive lysosomal-metabolic signaling and neurodevelopmental deficits that precede Purkinje cell loss in a mouse model of Niemann-Pick Type-C disease. Sci Rep 2023; 13:5665. [PMID: 37024714 PMCID: PMC10079843 DOI: 10.1038/s41598-023-32971-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in the Npc1 or Npc2 genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using the Npc1nmf164 mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164 PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found in Npc1-deficient mice. However, in contrast to Npc1nmf164 mice, Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Kathleen Ochoa
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Sierra E Melli
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Fawad A K Yousufzai
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zerian D Barrera
- Department of Biological Science, Rowan University, Glassboro, NJ, USA
| | - Aela A Williams
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Gianna McIntyre
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Esteban Delgado
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - James N Bolish
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | | | - Mary Boghos
- Department of Biology, Providence College, Providence, RI, USA
| | - Hayden P Lens
- Department of Biology, Providence College, Providence, RI, USA
| | - Alex G Ramos
- Department of Biology, Providence College, Providence, RI, USA
| | - Vincent B Wilson
- Department of Biological Science, Rowan University, Glassboro, NJ, USA
| | - Kelly Maloney
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zachary M Padron
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Amaal H Khan
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Rosa E Blanco
- The Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Ileana Soto
- Department of Biology, Providence College, Providence, RI, USA.
| |
Collapse
|
3
|
Morton C, Cotero V, Ashe J, Ginty F, Puleo C. Accelerating cutaneous healing in a rodent model of type II diabetes utilizing non-invasive focused ultrasound targeted at the spleen. Front Neurosci 2022; 16:1039960. [PMID: 36478877 PMCID: PMC9721138 DOI: 10.3389/fnins.2022.1039960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Healing of wounds is delayed in Type 2 Diabetes Mellitus (T2DM), and new treatment approaches are urgently needed. Our earlier work showed that splenic pulsed focused ultrasound (pFUS) alters inflammatory cytokines in models of acute endotoxemia and pneumonia via modulation of the cholinergic anti-inflammatory pathway (CAP) (ref below). Based on these earlier results, we hypothesized that daily splenic exposure to pFUS during wound healing would accelerate closure rate via altered systemic cytokine titers. In this study, we applied non-invasive ultrasound directed to the spleen of a rodent model [Zucker Diabetic Sprague Dawley (ZDSD) rats] of T2DM with full thickness cutaneous excisional wounds in an attempt to accelerate wound healing via normalization of T2DM-driven aberrant cytokine expression. Daily (1x/day, Monday-Friday) pFUS pulses were targeted externally to the spleen area for 3 min over the course of 15 days. Wound diameter was measured daily, and levels of cytokines were evaluated in spleen and wound bed lysates. Non-invasive splenic pFUS accelerated wound closure by up to 4.5 days vs. sham controls. The time to heal in all treated groups was comparable to that of healthy rats from previously published studies (ref below), suggesting that the pFUS treatment restored a normal wound healing phenotype to the ZDSD rats. IL-6 was lower in stimulated spleen (-2.24 ± 0.81 Log2FC, p = 0.02) while L-selectin was higher in the wound bed of stimulated rodents (2.53 ± 0.72 Log2FC, p = 0.003). In summary, splenic pFUS accelerates healing in a T2DM rat model, demonstrating the potential of the method to provide a novel, non-invasive approach for wound care in diabetes.
Collapse
Affiliation(s)
| | | | | | - Fiona Ginty
- Biology and Applied Physics, GE Research, Niskayuna, NY, United States
| | - Christopher Puleo
- GE Research, Niskayuna, NY, United States
- *Correspondence: Christopher Puleo,
| |
Collapse
|
4
|
Chen K, Rao Z, Dong S, Chen Y, Wang X, Luo Y, Gong F, Li X. Roles of the fibroblast growth factor signal transduction system in tissue injury repair. BURNS & TRAUMA 2022; 10:tkac005. [PMID: 35350443 PMCID: PMC8946634 DOI: 10.1093/burnst/tkac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Following injury, tissue autonomously initiates a complex repair process, resulting in either partial recovery or regeneration of tissue architecture and function in most organisms. Both the repair and regeneration processes are highly coordinated by a hierarchy of interplay among signal transduction pathways initiated by different growth factors, cytokines and other signaling molecules under normal conditions. However, under chronic traumatic or pathological conditions, the reparative or regenerative process of most tissues in different organs can lose control to different extents, leading to random, incomplete or even flawed cell and tissue reconstitution and thus often partial restoration of the original structure and function, accompanied by the development of fibrosis, scarring or even pathogenesis that could cause organ failure and death of the organism. Ample evidence suggests that the various combinatorial fibroblast growth factor (FGF) and receptor signal transduction systems play prominent roles in injury repair and the remodeling of adult tissues in addition to embryonic development and regulation of metabolic homeostasis. In this review, we attempt to provide a brief update on our current understanding of the roles, the underlying mechanisms and clinical application of FGFs in tissue injury repair.
Collapse
Affiliation(s)
| | | | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of breast surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongde Luo
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| | - Fanghua Gong
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| | - Xiaokun Li
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| |
Collapse
|
5
|
Ding Y, Botchway BOA, Zhang Y, Jin T, Liu X. The combination of autologous mesenchymal stem cell-derived exosomes and neurotrophic factors as an intervention for amyotrophic lateral sclerosis. Ann Anat 2022; 242:151921. [PMID: 35278658 DOI: 10.1016/j.aanat.2022.151921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis is a chronic progressive degeneration of motor neurons and has a high mortality. Riluzole and edaravone are the only approved medications currently being used for amyotrophic lateral sclerosis in clinical settings. However, they can lead to serious complications, such as injuries to the liver and kidney. To date, there is no effective treatment for amyotrophic lateral sclerosis. In this regard, investigations concerning the employment of exosomes, mesenchymal stem cells, and neurotrophic factors to ameliorate amyotrophic lateral sclerosis are attracting considerable attention in the scientific community. Herein, we systematically analyze the relationship relevant to autologous mesenchymal stem cell derived-exosomes, neurotrophic factors and amyotrophic lateral sclerosis. Mesenchymal stem cells modulate immune response, mitigate oxidative stress, promote neuronal regeneration, and differentiate into neuronal and glial cells. Furthermore, exosomes from mesenchymal stem cells exert beneficial effects on their mother cells by preventing abnormal differentiation of mesenchymal stem cells. Similarly, neurotrophic factors regulate inflammatory response, stimulate the neuron repair, and the recovery of neuronal functioning. Therefore, autologous mesenchymal stem cells-derived exosomes combined with neurotrophic factors could potentially be an effective interventional medium for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China; School of Basic Medical Sciences, Hangzhou Normal University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
6
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
7
|
De La Rosa-Reyes V, Duprey-Díaz MV, Blagburn JM, Blanco RE. Retinoic acid treatment recruits macrophages and increases axonal regeneration after optic nerve injury in the frog Rana pipiens. PLoS One 2021; 16:e0255196. [PMID: 34739478 PMCID: PMC8570512 DOI: 10.1371/journal.pone.0255196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Retinoic acid (RA) plays major roles during nervous system development, and during regeneration of the adult nervous system. We have previously shown that components of the RA signaling pathway are upregulated after optic nerve injury, and that exogenous application of all-trans retinoic acid (ATRA) greatly increases the survival of axotomized retinal ganglion cells (RGCs). The objective of the present study is to investigate the effects of ATRA application on the macrophages in the optic nerve after injury, and to determine whether this affects axonal regeneration. The optic nerve was crushed and treated with PBS, ATRA and/or clodronate-loaded liposomes. Nerves were examined at one and two weeks after axotomy with light microscopy, immunocytochemistry and electron microscopy. ATRA application to the optic nerve caused transient increases in the number of macrophages and microglia one week after injury. The macrophages are consistently labeled with M2-type markers, and have considerable phagocytic activity. ATRA increased ultrastructural features of ongoing phagocytic activity in macrophages at one and two weeks. ATRA treatment also significantly increased the numbers of regenerating GAP-43-labeled axons. Clodronate liposome treatment depleted macrophage numbers by 80%, completely eliminated the ATRA-mediated increase in axonal regeneration, and clodronate treatment alone decreased axonal numbers by 30%. These results suggest that the success of axon regeneration is partially dependent on the presence of debris-phagocytosing macrophages, and that the increases in regeneration caused by ATRA are in part due to their increased numbers. Further studies will examine whether macrophage depletion affects RGC survival.
Collapse
Affiliation(s)
- Valeria De La Rosa-Reyes
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mildred V. Duprey-Díaz
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rosa E. Blanco
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang Y, Meng T, Chen J, Zhang Y, Kang J, Li X, Yu G, Tian L, Jin Z, Dong H, Zhang X, Ning B. miR-21a-5p Promotes Inflammation following Traumatic Spinal Cord Injury through Upregulation of Neurotoxic Reactive Astrocyte (A1) Polarization by Inhibiting the CNTF/STAT3/Nkrf Pathway. Int J Biol Sci 2021; 17:2795-2810. [PMID: 34345208 PMCID: PMC8326122 DOI: 10.7150/ijbs.60509] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive astrocytes are implicated in traumatic spinal cord injury (TSCI). Interestingly, naïve astrocytes can easily transform into neurotoxic reactive astrocytes (A1s) with inflammatory stimulation. Previous studies demonstrated that microRNA(miR)-21a-5p was up-regulated in spinal cord tissue after TSCI; however, it is not clear whether this affected reactive astrocyte polarization. Here, we aim to detect the effects of miR-21a-5p on the induction of A1 formation and the underlying mechanisms. Our study found that the expression of miR-21a-5p was significantly increased while that of Cntfr α was decreased, since naïve astrocytes transformed into A1s 3 days post-TSCI; the binding site between miR-21a-5p and Cntfr α was further confirmed in astrocytes. After treatment with CNTF, the levels of A1 markers decreased while that of A2 increased. The expression of A1 markers significantly decreased with the downregulation of miR-21a-5p, while Cntfr α siRNA treatment caused the opposite both in vitro and in vivo. To summarize, miR-21a-5p/Cntfr α promotes A1 induction and might enhance the inflammatory process of TSCI; furthermore, we identified, for the first time, the effect and potential mechanism by which CNTF inhibits naïve astrocytes transformation into A1s. Collectively, our findings demonstrate that targeting miR-21a-5p represents a prospective therapy for promoting the recovery of TSCI.
Collapse
Affiliation(s)
- Yining Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Tingting Meng
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Jianan Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Xinyu Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Guilian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Lige Tian
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Zhengxin Jin
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| | - Hui Dong
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105, Jiefang Road, Jinan, Shandong 250013, China
| | - Xiaodi Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250013, China
| |
Collapse
|
9
|
Geoffrion D, Robert MC, Di Polo A, Koenekoop RK, Agoumi Y, Harissi-Dagher M. Tear Film Cytokine Profile of Patients With the Boston Keratoprosthesis Type 1: Comparing Patients With and Without Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 33856415 PMCID: PMC8054627 DOI: 10.1167/iovs.62.4.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Inflammatory cytokines are involved in glaucoma pathogenesis. The purpose is to compare cytokine levels in the tear film of Boston keratoprosthesis (KPro) patients with and without glaucoma, relative to controls, and correlate levels with clinical parameters. Methods This cross-sectional study enrolled 58 eyes (58 patients): 41 KPro eyes with glaucoma, 7 KPro eyes without glaucoma, and 10 healthy controls. Twenty-seven cytokines were measured by multiplex bead immunoassay. Intraocular pressure (IOP), cup-to-disk ratio (CDR), retinal nerve fiber layer, visual acuity, topical medications, and angle closure were assessed in all KPro eyes. Cytokine levels between groups were analyzed by nonparametric tests, and correlations with clinical parameters by Spearman's test. Results Levels of TNF-ɑ, IL-1β, FGF-basic, and IFN-ɣ were significantly higher in KPro with glaucoma compared to KPro without (P = 0.020; 0.008; 0.043; 0.018, respectively). KPro groups had similar characteristics and topical antibiotic/steroid regimen. Levels of IL-1Ra, IL-15, VEGF, and RANTES were significantly higher in KPro with glaucoma compared to controls (P < 0.001; = 0.034; < 0.001; = 0.001, respectively). IL-1β and IFN-ɣ levels were positively correlated with CDR (r = 0.309, P = 0.039 and r = 0.452, P = 0.006, respectively) and IOP (r = 0.292, P = 0.047 and r = 0.368, P = 0.023, respectively). TNF-α and FGF-basic levels were positively correlated with CDR (r = 0.348, P = 0.022 and r = 0.344, P = 0.021, respectively). Conclusions TNF-α, IL-1β, FGF-basic, IFN-ɣ are elevated in tears of KPro patients with glaucoma and correlate with CDR and IOP. These results show, for the first time in humans, concordance with documented elevations of TNF-α and IL-1β in the murine KPro model. Ocular surface inflammation may reflect inflammatory processes of KPro glaucoma.
Collapse
Affiliation(s)
- Dominique Geoffrion
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marie-Claude Robert
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Adriana Di Polo
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Robert K Koenekoop
- Departments of Experimental Surgery, Paediatric Surgery, Adult Ophthalmology, and Human Genetics, Montreal Children's Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Younes Agoumi
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mona Harissi-Dagher
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Yin Y, De Lima S, Gilbert HY, Hanovice NJ, Peterson SL, Sand RM, Sergeeva EG, Wong KA, Xie L, Benowitz LI. Optic nerve regeneration: A long view. Restor Neurol Neurosci 2020; 37:525-544. [PMID: 31609715 DOI: 10.3233/rnn-190960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The optic nerve conveys information about the outside world from the retina to multiple subcortical relay centers. Until recently, the optic nerve was widely believed to be incapable of re-growing if injured, with dire consequences for victims of traumatic, ischemic, or neurodegenerative diseases of this pathway. Over the past 10-20 years, research from our lab and others has made considerable progress in defining factors that normally suppress axon regeneration and the ability of retinal ganglion cells, the projection neurons of the retina, to survive after nerve injury. Here we describe research from our lab on the role of inflammation-derived growth factors, suppression of inter-cellular signals among diverse retinal cell types, and combinatorial therapies, along with related studies from other labs, that enable animals with optic nerve injury to regenerate damaged retinal axons back to the brain. These studies raise the possibility that vision might one day be restored to people with optic nerve damage.
Collapse
Affiliation(s)
- Yuqin Yin
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Silmara De Lima
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Hui-Ya Gilbert
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Rheanna M Sand
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elena G Sergeeva
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Lili Xie
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Kavetsky L, Green KK, Boyle BR, Yousufzai FAK, Padron ZM, Melli SE, Kuhnel VL, Jackson HM, Blanco RE, Howell GR, Soto I. Increased interactions and engulfment of dendrites by microglia precede Purkinje cell degeneration in a mouse model of Niemann Pick Type-C. Sci Rep 2019; 9:14722. [PMID: 31605022 PMCID: PMC6788982 DOI: 10.1038/s41598-019-51246-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present.
Collapse
Affiliation(s)
- Larisa Kavetsky
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Kayla K Green
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Bridget R Boyle
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Fawad A K Yousufzai
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zachary M Padron
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Sierra E Melli
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Victoria L Kuhnel
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | | | - Rosa E Blanco
- The Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | | | - Ileana Soto
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|