1
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
2
|
Lee J, Lee J, Choi Y, Kim T, Chang PS. An sn-2 regioselective lipase with cis-fatty acid preference from Cordyceps militaris: Biochemical characterization and insights into its regioselective mechanism. Int J Biol Macromol 2024; 276:134013. [PMID: 39032883 DOI: 10.1016/j.ijbiomac.2024.134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Lipase with unique regioselectivity is an attractive biocatalyst for elaborate lipid modification. However, the excavation of novel sn-2 regioselective lipases is difficult due to their scarcity in nature, with Candida antarctica lipase A (CALA) being the pronouncedly reported one. Here, we identified a novel CALA-like lipase from Cordyceps militaris (CACML7) via in silico mining. Through chiral-phase high-performance liquid chromatography, we determined that CACML7 displays sn-2 regioselectivity (>68 %) as does CALA, but exhibits distinctive chain length selectivity and bias against unsaturated fats. Notably, the curvature of the acyl-binding tunnel was expected to contribute to the 2.2-fold higher preference for cis-fatty acid (C18:1, cis-Δ9) over trans-fatty acid (C18:1, trans-Δ9) unlike trans-active CALA. Random pose docking of trioleoylglycerol (TOG) into the active site of a lid-truncated mutant of CACML7 revealed that TOG accepts a tuning fork conformation, of which the precise positioning of the reactive ester group towards the catalytic center was only favorable via sn-2 binding mode. The unique active site morphology, which we refer to as an "acyl-binding tunnel with a narrow entrance," may contribute to the sn-2 regioselectivity of CACML7. Our data provide an attractive model to better understand the mechanism underlying sn-2 regioselectivity.
Collapse
Affiliation(s)
- Juno Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Juchan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonseok Choi
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taehyeong Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; Integrated Major in Global Smart Farm, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Vardar-Yel N, Tütüncü HE, Sürmeli Y. Lipases for targeted industrial applications, focusing on the development of biotechnologically significant aspects: A comprehensive review of recent trends in protein engineering. Int J Biol Macromol 2024; 273:132853. [PMID: 38838897 DOI: 10.1016/j.ijbiomac.2024.132853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Lipases are remarkable biocatalysts, adept at catalyzing the breakdown of diverse compounds into glycerol, fatty acids, and mono- and di-glycerides via hydrolysis. Beyond this, they facilitate esterification, transesterification, alcoholysis, acidolysis, and more, making them versatile in industrial applications. In industrial processes, lipases that exhibit high stability are favored as they can withstand harsh conditions. However, most native lipases are unable to endure adverse conditions, making them unsuitable for industrial use. Protein engineering proves to be a potent technology in the development of lipases that can function effectively under challenging conditions and fulfill criteria for various industrial processes. This review concentrated on new trends in protein engineering to enhance the diversity of lipase genes and employed in silico methods for predicting and comprehensively analyzing target mutations in lipases. Additionally, key molecular factors associated with industrial characteristics of lipases, including thermostability, solvent tolerance, catalytic activity, and substrate preference have been elucidated. The present review delved into how industrial traits can be enhanced through directed evolution (epPCR, gene shuffling), rational design (FRESCO, ASR), combined engineering strategies (i.e. CAST, ISM, and FRISM) as protein engineering methodologies in contexts of biodiesel production, food processing, and applications of detergent, pharmaceutics, and plastic degradation.
Collapse
Affiliation(s)
- Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey
| | - Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey.
| |
Collapse
|
4
|
Albayati SH, Masomian M, Ishak SNH, Leow ATC, Ali MSM, Shariff FM, Noor NDM, Rahman RNZRA. Altering the Regioselectivity of T1 Lipase from Geobacillus zalihae toward sn-3 Acylglycerol Using a Rational Design Approach. Catalysts 2023; 13:416. [DOI: 10.3390/catal13020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The regioselectivity characteristic of lipases facilitate a wide range of novel molecule unit constructions and fat modifications. Lipases can be categorized as sn-1,3, sn-2, and random regiospecific. Geobacillus zalihae T1 lipase catalyzes the hydrolysis of the sn-1,3 acylglycerol chain. The T1 lipase structural analysis shows that the oxyanion hole F16 and its lid domain undergo structural rearrangement upon activation. Site-directed mutagenesis was performed by substituting the lid domain residues (F180G and F181S) and the oxyanion hole residue (F16W) in order to study their effects on the structural changes and regioselectivity. The novel lipase mutant 3M switches the regioselectivity from sn-1,3 to only sn-3. The mutant 3M shifts the optimum pH to 10, alters selectivity toward p-nitrophenyl ester selectivity to C14-C18, and maintains a similar catalytic efficiency of 518.4 × 10−6 (s−1/mM). The secondary structure of 3M lipase comprises 15.8% and 26.3% of the α-helix and β-sheet, respectively, with a predicted melting temperature (Tm) value of 67.8 °C. The in silico analysis was conducted to reveal the structural changes caused by the F180G/F181S/F16W mutations in blocking the binding of the sn-1 acylglycerol chain and orientating the substrate to bond to the sn-3 acylglycerol, which resulted in switching the T1 lipase regioselectivity.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
5
|
Alejaldre L, Lemay-St-Denis C, Pelletier JN, Quaglia D. Tuning Selectivity in CalA Lipase: Beyond Tunnel Engineering. Biochemistry 2023; 62:396-409. [PMID: 36580299 PMCID: PMC9851156 DOI: 10.1021/acs.biochem.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Engineering studies of Candida (Pseudozyma) antarctica lipase A (CalA) have demonstrated the potential of this enzyme in the selective hydrolysis of fatty acid esters of different chain lengths. CalA has been shown to bind substrates preferentially through an acyl-chain binding tunnel accessed via the hydrolytic active site; it has also been shown that selectivity for substrates of longer or shorter chain length can be tuned, for instance by modulating steric hindrance within the tunnel. Here we demonstrate that, whereas the tunnel region is certainly of paramount importance for substrate recognition, residues in distal regions of the enzyme can also modulate substrate selectivity. To this end, we investigate variants that carry one or more substitutions within the substrate tunnel as well as in distal regions. Combining experimental determination of the substrate selectivity using natural and synthetic substrates with computational characterization of protein dynamics and of tunnels, we deconvolute the effect of key substitutions and demonstrate that epistatic interactions contribute to procuring selectivity toward either long-chain or short/medium-chain fatty acid esters. We demonstrate that various mechanisms contribute to the diverse selectivity profiles, ranging from reshaping tunnel morphology and tunnel stabilization to obstructing the main substrate-binding tunnel, highlighting the dynamic nature of the substrate-binding region. This work provides important insights into the versatility of this robust lipase toward diverse applications.
Collapse
Affiliation(s)
- Lorea Alejaldre
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
| | - Claudèle Lemay-St-Denis
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
| | - Joelle N. Pelletier
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
- Department
of Chemistry, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Daniela Quaglia
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Chemistry, Université de Montréal, Montréal, QC, CanadaH2V 0B3
- Department
of Chemistry, Carleton University, Ottawa, ON, CanadaK1S 5B6
| |
Collapse
|
6
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Godoy CA, Pardo-Tamayo JS, Barbosa O. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Int J Mol Sci 2022; 23:9933. [PMID: 36077332 PMCID: PMC9456414 DOI: 10.3390/ijms23179933] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Processes involving lipases in obtaining active pharmaceutical ingredients (APIs) are crucial to increase the sustainability of the industry. Despite their lower production cost, microbial lipases are striking for their versatile catalyzing reactions beyond their physiological role. In the context of taking advantage of microbial lipases in reactions for the synthesis of API building blocks, this review focuses on: (i) the structural origins of the catalytic properties of microbial lipases, including the results of techniques such as single particle monitoring (SPT) and the description of its selectivity beyond the Kazlauskas rule as the "Mirror-Image Packing" or the "Key Region(s) rule influencing enantioselectivity" (KRIE); (ii) immobilization methods given the conferred operative advantages in industrial applications and their modulating capacity of lipase properties; and (iii) a comprehensive description of microbial lipases use as a conventional or promiscuous catalyst in key reactions in the organic synthesis (Knoevenagel condensation, Morita-Baylis-Hillman (MBH) reactions, Markovnikov additions, Baeyer-Villiger oxidation, racemization, among others). Finally, this review will also focus on a research perspective necessary to increase microbial lipases application development towards a greener industry.
Collapse
Affiliation(s)
- César A. Godoy
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Juan S. Pardo-Tamayo
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Oveimar Barbosa
- Grupo de Investigación de Materiales Porosos (GIMPOAT), Departamento de Química, Universidad del Tolima, Ibague 730001, Colombia
| |
Collapse
|
8
|
Alejaldre L, Pelletier JN, Quaglia D. Methods for enzyme library creation: Which one will you choose?: A guide for novices and experts to introduce genetic diversity. Bioessays 2021; 43:e2100052. [PMID: 34263468 DOI: 10.1002/bies.202100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Enzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions. The expert will discover an up-to-date tool to freshen up their repertoire (Section I) and learn of the newest methods that are likely to become a mainstay (Section II). We focus primarily on in vitro methods, presenting the advantages of each method. Our ultimate aim is to offer a selection of methods/strategies that we believe to be most useful to the enzyme engineer, whether a first-timer or a seasoned user.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada
| | - Joelle N Pelletier
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada.,Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Daniela Quaglia
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada.,School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Skoczinski P, Espinoza Cangahuala MK, Maniar D, Loos K. Enzymatic transesterification of urethane-bond containing ester. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractHere we demonstrate the feasibility and successful application of enzymes in polyurethane network synthesis as well as occurring hurdles that have to be addressed when using urethanes synthesis substrates. The enzymatic transesterification of an urethane-bond containing monofunctional ester and a model alcohol carbitol using lipases is discussed. The reaction is optimized in terms of transesterification time and temperature, the reaction solvent, the possibility of a cosolvent and the alcohol amount, the used transesterification environment, and the biocatalyst. Enzymatic cross-linking of polyurethanes can open up a pool of new possibilities for cross-linking and related polyurethane network properties due to the enzymes high enantio-, stereo-, and regioselectivity and broad substrate spectrum.
Collapse
|
10
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
11
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
12
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
13
|
Oroz‐Guinea I, Zorn K, Bornscheuer UT. Enhancement of Lipase CAL‐A Selectivity by Protein Engineering for the Hydrolysis of Erucic Acid from
Crambe
Oil. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Isabel Oroz‐Guinea
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Katja Zorn
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix‐Hausdorff‐Str. 417487 GreifswaldGermany
| |
Collapse
|