1
|
Qian Y, Lai L, Cheng M, Fang H, Fan D, Zylstra GJ, Huang X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl Environ Microbiol 2024; 90:e0151224. [PMID: 39431819 DOI: 10.1128/aem.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff. Herein, a novel amidase AphA was identified from a pure cultured strain that can concurrently mediate the hydrolytic inactivation of CHL, TAP, and Ff, yielding products p-nitrophenylserinol, thiamphenicol amine (TAP-amine), and florfenicol amine (Ff-amine), respectively. The antibacterial activity of these antibiotic hydrolysates exhibited a significant reduction or complete loss in comparison to the parent compounds. Notably, AphA shared less than 26% amino acid sequence identity with previously reported enzymes and exhibited high conservation within the sphingomonad species. Through enzymatic kinetic analysis, the AphA exhibited markedly superior affinity and catalytic activity toward Ff in comparison to CHL and TAP. Site-directed mutagenesis analysis revealed the indispensability of catalytic triad residues, particularly serine 153 and histidine 277, in forming crucial hydrogen bonds essential for AphA's hydrolytic activity. Comparative genomic analysis showed that aphA genes in some species are closely adjacent to various transposable elements, indicating that there is a high potential risk of horizontal gene transfer (HGT). This study established a hydrolysis resistance mechanism of amphenicol antibiotics in sphingomonads, which offers theoretical guidance and a novel marker gene for assessing the prevalent risk of amphenicol antibiotics in the environment.IMPORTANCEAmphenicol antibiotics are pervasive emerging contaminants that present a substantial threat to ecological systems. Few studies have elucidated resistance genes or mechanisms that can act on CHL, TAP, and Ff simultaneously. The results of this study fill this knowledge gap and identify a novel amidase AphA from the bacterium Sphingobium yanoikuyae B1, which mediates three typical amphenicol antibiotic inactivation, and the molecular mechanism is elucidated. The diverse types of transposable elements were identified in the flanking regions of the aphA gene, indicating the risk of horizontal transfer of this antibiotic resistance genes (ARG). These findings offer new insights into the bacterial resistance to amphenicol antibiotics. The gene reported herein can be utilized as a novel genetic diagnostic marker for monitoring the environmental fate of amphenicol antibiotics, thereby enriching risk assessment efforts within the context of antibiotic resistance.
Collapse
Affiliation(s)
- Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Fan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Kaszecki E, Palberg D, Grant M, Griffin S, Dhanjal C, Capperauld M, Emery RJN, Saville BJ. Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance. Int Microbiol 2024; 27:1249-1268. [PMID: 38167969 PMCID: PMC11300505 DOI: 10.1007/s10123-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis. RESULTS This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum. CONCLUSION This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.
Collapse
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Daniel Palberg
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Mikaella Grant
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Sarah Griffin
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Chetan Dhanjal
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - R J Neil Emery
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
3
|
Fang Y, Liu F, Shi Y, Yang T, Xin Y, Gu Z, Shi G, Zhang L. N-terminal lid swapping contributes to the substrate specificity and activity of thermophilic lipase TrLipE. Front Microbiol 2023; 14:1193955. [PMID: 37434709 PMCID: PMC10332459 DOI: 10.3389/fmicb.2023.1193955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
TrLipE is a thermophilic lipase that has potential commercial applications because of its catalytic ability under extreme conditions. Consistent with most lipases, the lid of TrLipE is located over the catalytic pocket, controls the substrate channel to the active center, and regulates the substrate specificity, activity, and stability of the enzyme through conformational changes. TrLipE from Thermomicrobium roseum has potential industrial applications, which is hindered by its weak enzymatic activity. Here, 18 chimeras (TrL1-TrL18) were reconstructed by N-terminal lid swapping between TrLipE and structurally similar enzymes. The results showed that the chimeras had a similar pH range and optimum pH as wild TrLipE but a narrower temperature range of 40-80°C, and TrL17 and the other chimeras showed lower optimum temperatures of 70°C and 60°C, respectively. In addition, the half-lives of the chimeras were lower than those of TrLipE under optimum temperature conditions. Molecular dynamics simulations indicated that chimeras had high RMSD, RMSF, and B-factor values. When p-nitrophenol esters with different chains were used as substrates, compared with TrLipE, most of the chimeras had a low Km and high kcat value. The chimeras TrL2, TrL3, TrL17, and TrL18 could specifically catalyze the substrate 4-nitrophenyl benzoate, with TrL17 showing the highest kcat/Km value of 363.88 ± 15.83 L⋅min-1⋅mmol-1. Mutants were then designed by investigating the binding free energies of TrL17 and 4-nitrophenyl benzoate. The results indicated that single, double, and triple substitution variants (M89W and I206N; E33W/I206M and M89W/I206M; and M89W/I206M/L21I and M89W/I206N/L21I, respectively) presented approximately 2- to 3-fold faster catalysis of 4-nitrophenyl benzoate than the wild TrL17. Our observations will facilitate the development of the properties and industrial applications of TrLipE.
Collapse
Affiliation(s)
- Yakun Fang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Fan Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Ting Yang
- Wuxi Food Safety Inspection and Test Center, Technology Innovation Center of Special Food for State Market Regulation, Wuxi, Jiangsu, China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Do H, Yoo W, Wang Y, Nam Y, Shin SC, Kim HW, Kim KK, Lee JH. Crystal structure and biochemical analysis of acetylesterase (LgEstI) from Lactococcus garvieae. PLoS One 2023; 18:e0280988. [PMID: 36745644 PMCID: PMC9901739 DOI: 10.1371/journal.pone.0280988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
Esterase, a member of the serine hydrolase family, catalyzes the cleavage and formation of ester bonds with high regio- and stereospecificity, making them attractive biocatalysts for the synthesis of optically pure molecules. In this study, we performed an in-depth biochemical and structural characterization of a novel microbial acetylesterase, LgEstI, from the bacterial fish pathogen Lactococcus garvieae. The dimeric LgEstI displayed substrate preference for the short acyl chain of p-nitrophenyl esters and exhibited increased activity with F207A mutation. Comparative analysis with other esterases indicated that LgEstI has a narrow and shallow active site that may exhibit substrate specificity to short acyl chains. Unlike other esterases, LgEstI contains bulky residues such as Trp89, Phe194, and Trp217, which block the acyl chain channel. Furthermore, immobilized LgEstI retained approximately 90% of its initial activity, indicating its potential in industrial applications. This study expands our understanding of LgEstI and proposes novel ideas for improving its catalytic efficiency and substrate specificity for various applications.
Collapse
Affiliation(s)
- Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ying Wang
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women’s University, Seoul, Korea
| | - Yewon Nam
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Han-Woo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
- * E-mail:
| |
Collapse
|
5
|
Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol. Antibiotics (Basel) 2022; 11:antibiotics11040443. [PMID: 35453195 PMCID: PMC9029715 DOI: 10.3390/antibiotics11040443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.
Collapse
|
6
|
Boyko KM, Kryukova MV, Petrovskaya LE, Kryukova EA, Nikolaeva AY, Korzhenevsky DA, Lomakina GY, Novototskaya-Vlasova KA, Rivkina EM, Dolgikh DA, Kirpichnikov MP, Popov VO. Structural and Biochemical Characterization of a Cold-Active PMGL3 Esterase with Unusual Oligomeric Structure. Biomolecules 2021; 11:biom11010057. [PMID: 33466452 PMCID: PMC7824956 DOI: 10.3390/biom11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022] Open
Abstract
The gene coding for a novel cold-active esterase PMGL3 was previously obtained from a Siberian permafrost metagenomic DNA library and expressed in Escherichia coli. We elucidated the 3D structure of the enzyme which belongs to the hormone-sensitive lipase (HSL) family. Similar to other bacterial HSLs, PMGL3 shares a canonical α/β hydrolase fold and is presumably a dimer in solution but, in addition to the dimer, it forms a tetrameric structure in a crystal and upon prolonged incubation at 4 °C. Detailed analysis demonstrated that the crystal tetramer of PMGL3 has a unique architecture compared to other known tetramers of the bacterial HSLs. To study the role of the specific residues comprising the tetramerization interface of PMGL3, several mutant variants were constructed. Size exclusion chromatography (SEC) analysis of D7N, E47Q, and K67A mutants demonstrated that they still contained a portion of tetrameric form after heat treatment, although its amount was significantly lower in D7N and K67A compared to the wild type. Moreover, the D7N and K67A mutants demonstrated a 40 and 60% increase in the half-life at 40 °C in comparison with the wild type protein. Km values of these mutants were similar to that of the wt PMGL3. However, the catalytic constants of the E47Q and K67A mutants were reduced by ~40%.
Collapse
Affiliation(s)
- Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Correspondence: (K.M.B.); (L.E.P.)
| | - Mariya V. Kryukova
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Lada E. Petrovskaya
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Correspondence: (K.M.B.); (L.E.P.)
| | - Elena A. Kryukova
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
| | - Alena Y. Nikolaeva
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Dmitry A. Korzhenevsky
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| | - Galina Yu. Lomakina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Ksenia A. Novototskaya-Vlasova
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.N.-V.); (E.M.R.)
| | - Elizaveta M. Rivkina
- Laboratory of Soil Cryology, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.N.-V.); (E.M.R.)
| | - Dmitry A. Dolgikh
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Bioengineering, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.A.K.); (D.A.D.); (M.P.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Kurchatov Complex of NBICS-Technologies, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (M.V.K.); (A.Y.N.); (D.A.K.)
| |
Collapse
|
7
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
8
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|