1
|
Jokiel M, Kazmierczak K, Czarnecki P, Bartkowiak-Graczyk A, Madziewicz A, Breborowicz E, Miedzyblocka M, Adamski M, Kaczmarek K, Kaczmarek L, Romanowski L. Biomechanical Examination of Wrist Flexors and Extensors with Biodex System Dynamometer-Isometric, Isokinetic and Isotonic Protocol Options. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1184. [PMID: 39064613 PMCID: PMC11278849 DOI: 10.3390/medicina60071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Biodex System® is an advanced dynamometer used for testing various biomechanical parameters of muscles. Test outcomes allow for the identification of muscle pathology and consequently lead to a clinical diagnosis. Despite being widely used for the testing and rehabilitation of the human musculoskeletal system, no universal and acceptable protocol for wrist examination has been proposed for patients with wrist pathology. In this study, the authors aim to identify the most appropriate protocol for testing the biomechanical parameters of flexors and extensors of the wrist. Materials and Methods: A group of 20 patients with symptomatic tennis elbow and 26 healthy volunteers were examined using three different protocols: isokinetic, isometric and isotonic. Protocol order for each study participant was assigned at random with a minimum of a 24 h break between protocols. All protocol parameters were set according to data obtained from a literature review and an earlier pilot study. Following completion of each protocol, participants filled out a questionnaire-based protocol, assessing pain intensity during the exam, difficulty with exam performance and post-exam muscle fatigue. Results: The isotonic protocol showed the best patient tolerance and the highest questionnaire score. There was a significant difference (p < 0.05) between the three protocols in average pain intensity reported by study participants. All participants completed the isotonic protocol, but not all patients with symptomatic tennis elbow were able to complete the isometric and isokinetic protocols. The isotonic protocol was deemed "difficult but possible to complete" by study participants. Conclusions: The isotonic protocol is most suitable for testing the flexors and extensors of the wrist. It gives the most biomechanical data of all protocols, is well tolerated by patients and rarely causes pain during examination even in symptomatic participants.
Collapse
Affiliation(s)
- Marta Jokiel
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Physiotherapy Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Katarzyna Kazmierczak
- Department of Rehabilitation, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Piotr Czarnecki
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Bartkowiak-Graczyk
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Physiotherapy Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Anna Madziewicz
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Physiotherapy Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Ewa Breborowicz
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Malgorzata Miedzyblocka
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Michal Adamski
- Traumatology, Orthopedics and Hand Surgery Student Scientific Group, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Krystian Kaczmarek
- Traumatology, Orthopedics and Hand Surgery Student Scientific Group, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Leszek Kaczmarek
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Leszek Romanowski
- Traumatology, Orthopedics and Hand Surgery Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
2
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
3
|
Behm DG, Alizadeh S, Daneshjoo A, Konrad A. Potential Effects of Dynamic Stretching on Injury Incidence of Athletes: A Narrative Review of Risk Factors. Sports Med 2023; 53:1359-1373. [PMID: 37162736 PMCID: PMC10289929 DOI: 10.1007/s40279-023-01847-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 05/11/2023]
Abstract
The use of dynamic stretching as a replacement for static stretching in the warm-up is widespread based on the reports of static stretching-induced performance impairments. While acute and chronic static stretching has been reported to reduce musculotendinous injuries, especially with explosive and change of direction actions, the influence of dynamic stretching on injury incidence lacks a similar volume of literature for acute and chronic responses. It was the objective of this narrative review to examine the acute and training effects of dynamic stretching on injury incidence and possible moderating variables such as dynamic stretching effects on range of motion, strength, balance, proprioception, muscle morphology, and psycho-physiological responses. One study demonstrated no significant difference regarding injury incidence when comparing a dynamic stretching-only group versus a combined dynamic stretching plus static stretching group. The only other study examined functional dynamic stretching training with injured dancers and reported improved ankle joint stability. However, several studies have shown that dynamic activity with some dynamic stretching exercises within a warm-up consistently demonstrates positive effects on injury incidence. Regarding moderating variables, while there is evidence that an acute bout of dynamic stretching can enhance range of motion, the acute and training effects of dynamic stretching on strength, balance, proprioception, and musculotendinous stiffness/compliance are less clear. The acute effects of dynamic stretching on thixotropic effects and psycho-physiological responses could be beneficial for injury reduction. However, the overall conflicting studies and a lack of substantial literature compared with SS effects points to a need for more extensive studies in this area.
Collapse
Affiliation(s)
- David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
| | - Abdolhamid Daneshjoo
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| |
Collapse
|
4
|
Chen CH, Chiu CH, Tseng WC, Wu CY, Su HH, Chang CK, Ye X. Acute Effects of Combining Dynamic Stretching and Vibration Foam Rolling Warm-up on Lower-Limb Muscle Performance and Functions in Female Handball Players. J Strength Cond Res 2023; 37:1277-1283. [PMID: 33651738 DOI: 10.1519/jsc.0000000000003998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Chen, CH, Chiu, CH, Tseng, WC, Wu, CY, Su, HH, Chang, CK, and Ye, X. Acute effects of combining dynamic stretching and vibration foam rolling warm-up on lower-limb muscle performance and functions in female handball players. J Strength Cond Res 36(4): 920-926, 2022-The purpose of this study was to compare the acute effects of 3 warm-up protocols on knee flexor and extensor muscles performance in elite female collegiate handball players. Ten female handball players with poor hamstring flexibility completed 3 randomly sequenced experimental visits. During each visit, a different warm-up protocol (general running warm-up [GW], dynamic stretching [DS], or DS combined with vibration foam rolling [DS + VR]) was delivered before the subsequent tests: quadriceps and hamstring muscle stiffness, knee extension and flexion range of motion (ROM), knee joint position sense, knee extension and flexion isokinetic strength with hamstring-quadriceps strength ratio, and muscle endurance during fatiguing exercise. Relative to the GW, the DS + VR protocol resulted in significantly greater knee flexion ROM (mean ± SD : DS + VR = 79.4° ± 7.7°; GW = 69.3° ± 9.6°) and lower hamstring muscle stiffness (DS + VR = 253.33 ± 36.20 N·m -1 ; GW = 292.89 ± 24.28 N·m -1 ). In addition, the DS + VR protocol also yielded greater hamstring muscle endurance than the other 2 protocols did (fatigue percentage: DS + VR = 30.24% ± 10.84%; GW = 41.40% ± 8.98%; DS = 42.22% ± 9.42%). Therefore, the results of this experiment suggest that it can be more beneficial for the female handball players to warm-up with the DS + VR, rather than the GW and DS protocols.
Collapse
Affiliation(s)
- Che-Hsiu Chen
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Chih-Hui Chiu
- Department of Exercise and Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Wei-Chin Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Chun-Yen Wu
- Department of Rehabilitation, Feng Yuan Hospital of the Ministry of Health and Welfare, Taichung, Taiwan
| | - Hsi-Hsun Su
- Department of Rehabilitation, Feng Yuan Hospital of the Ministry of Health and Welfare, Taichung, Taiwan
| | - Chien-Km Chang
- Department of Ball Sports, National Taiwan University of Sport, Taichung, Taiwan; and
| | - Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| |
Collapse
|
5
|
Effect of Stretching Protocols on Glenohumeral-Joint Muscle Activation in Elite Table Tennis Players. Int J Sports Physiol Perform 2021; 16:110-116. [PMID: 33186900 DOI: 10.1123/ijspp.2019-0768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Several studies report static-stretch-induced deficits and dynamic-stretch performance improvement after intervention. PURPOSE To investigate the muscle activation of the forehand and backhand in table tennis players after experiencing static- and dynamic-stretching protocols. METHODS A total of 24 elite male table tennis players (age 22.7 [3.46] y, height 1.78 [0.03] m) were tested before and 0, 10, 20, and 30 min after the 3 conditions (dynamic stretch, static stretch, and no stretch). The MEGA ME6000 (Mega Electronics, Kuopio, Finland) was used to capture the surface EMG data of the anterior deltoid, middle deltoid, posterior deltoid, biceps, and triceps muscles. Muscle activation data of the pretest were compared with posttest 0, 10, 20, and 30 min. These data were also compared between 3 different conditions (dynamic stretch, static stretch, and no stretch). RESULTS A 2-way repeated-measures analysis of variance indicated significant differences in the forehand and backhand, and Bonferroni test as a post hoc comparison revealed significant differences between the pretest and posttests in several muscles (P < .05). Furthermore, there were significant differences in the posttest between the 3 conditions (P < .05). CONCLUSIONS In general, there was a short-term effect of static- and dynamic-stretching protocols on glenohumeral-joint muscle activation in elite table tennis players. The static and dynamic stretching presented a decrease and increase, respectively, in muscle activation up to 30 min after stretching. In conclusion, the additive and subtractive effects of dynamic- and static-stretching protocols on muscle activation seem to persist after 30 min.
Collapse
|