1
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
2
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
3
|
Rikken G, Meesters LD, Jansen PAM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, Niehues H, Smits JPH, Oláh P, Homey B, Schalkwijk J, Zeeuwen PLJM, van den Bogaard EH. Novel methodologies for host-microbe interactions and microbiome-targeted therapeutics in 3D organotypic skin models. MICROBIOME 2023; 11:227. [PMID: 37849006 PMCID: PMC10580606 DOI: 10.1186/s40168-023-01668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.
Collapse
Affiliation(s)
- Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | | | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Oláh
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Rossi L, Tiecco G, Venturini M, Castelli F, Quiros-Roldan E. Human Orf with Immune-Mediated Reactions: A Systematic Review. Microorganisms 2023; 11:1138. [PMID: 37317112 DOI: 10.3390/microorganisms11051138] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Background: Orf is a highly contagious zoonosis caused by Orf virus (ORFV), which is endemic in sheep and goats worldwide. Human Orf is usually a self-limiting disease, but potential complications, including immune-mediated reactions, may occur. Methods: We included all articles regarding Orf-associated immunological complications published in peer-reviewed medical journals. We conducted a literature search of the United States National Library of Medicine, PubMed, MEDLINE, PubMed Central, PMC, and the Cochrane Controlled Trials. Results: A total of 16 articles and 44 patients were included, prevalently Caucasian (22, 95.7%) and female (22, 57.9%). The prevailing immunological reaction was erythema multiforme (26, 59.1%), followed by bullous pemphigoid (7, 15.9%). In most cases, the diagnosis was made on the basis of clinical and epidemiological history (29, 65.9%), while a biopsy of secondary lesions was performed in 15 patients (34.1%). A total of 12 (27.3%) patients received a local or systemic treatment for primary lesions. Surgical removal of primary lesion was described in two cases (4.5%). Orf-immune-mediated reactions were treated in 22 cases (50.0%), mostly with topical corticosteroids (12, 70.6%). Clinical improvement was reported for all cases. Conclusions: Orf-related immune reactions can have a varied clinical presentation, and it is important for clinicians to be aware of this in order to make a prompt diagnosis. The main highlight of our work is the presentation of complicated Orf from an infectious diseases specialist's point of view. A better understanding of the disease and its complications is essential to achieve the correct management of cases.
Collapse
Affiliation(s)
- Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia, 25123 Brescia, Italy
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Zhou Y, Guan J, Lv L, Cui H, Xu M, Wang S, Yu Z, Zhen R, He S, Fang Z, Zhong J, Cui S, Yu S, Song D, He W, Gao F, Zhao K. Complete genomic sequences and comparative analysis of two Orf virus isolates from Guizhou Province and Jilin Province, China. Virus Genes 2022; 58:403-413. [PMID: 35780442 DOI: 10.1007/s11262-022-01918-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Orf virus (ORFV, species Orf virus) belongs to the typical species of the Parapoxvirus genus of the family Poxviridae, which infects sheep, goats, and humans with worldwide distribution. Although outbreaks of Orf have been reported sequentially in several Chinese provinces, the epidemiology of Orf and genetic diversity of ORFV strains still needs to be further characterized. To further reveal the genomic organization of the ORFV-GZ18 and ORFV-CL18 isolates, the complete genome sequences of two recently obtained ORFV isolates were sequenced using the next-generation sequencing technology and analyzed, which had been deposited in the GenBank database under accession number MN648218 and MN648219, respectively. The complete genomic sequence of ORFV-CL18 was 138,495 bp in length, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 3481 bp at both ends, which has genomic structure typical Parapoxviruses. The overall genomic organization of the fully sequenced genome of ORFV-GZ18 was consistent with ORFV-CL18 genome, with a complete genome size of 138,446 nucleotides, containing 131 ORFs flanked by ITRs of 3469 bp. Additionally, the overall G + C contents of ORFV-GZ18 and ORFV-CL18 genome sequences were about 63.9% and 63.8%, respectively. The phylogenetic analysis showed that both ORFV-GZ18 and ORFV-CL18 were genetically closely related to ORFV-SY17 derived from sheep. In summary, the complete genomic sequences of ORFV-GZ18 and ORFV-CL18 are reported, with the hope it will be useful to investigate the host range, geographic distribution, and genetic evolution of the virus in Southern West and Northern East China.
Collapse
Affiliation(s)
- Yanlong Zhou
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Lijun Lv
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Huan Cui
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Mengshi Xu
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Zhaohui Yu
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Ruixue Zhen
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shishi He
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Ziyu Fang
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Jiawei Zhong
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shanshan Cui
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Shiying Yu
- Liupanshui Agriculture Bureau, Liupanshui, Guizhou, China
| | - Deguang Song
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China.,Key Laboratory of Zoonosis, Institute of Zoonosis, Jilin University, Ministry of Education, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, College of Veterinary Medicine, Jilin University, Ministry of Education, Changchun, China.
| |
Collapse
|
6
|
Kassa T. A Review on Human Orf: A Neglected Viral Zoonosis. Res Rep Trop Med 2021; 12:153-172. [PMID: 34267574 PMCID: PMC8275206 DOI: 10.2147/rrtm.s306446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Orf virus (ORFV) is the etiologic agent of Orf or ecthyma contagiosum in humans but primarily affects different domestic and wild animals. The disease mostly affects sheep, goats and other small wild ruminants and spreads to humans through direct contact with infected animals or by way of contaminated fomites worldwide. ORFV is taxonomically classified as a member of the genus Parapoxvirus. It is known to have tolerance to inactivation in a drier environment, and it has been recovered from crusts after several months to years. Among immunocompetent people, the lesions usually resolve by its natural course within a maximum of 8 weeks. In immunosuppressed patients, however, it needs the use of various approaches including antiviral, immune modifier or minor surgical excisions. The virus through its association with divergent host ranges helps to develop a mechanism to evade the immune system. The relative emergence of Orf, diagnosed on clinical ground among human cases, in unusual frequencies in southwest Ethiopia between October 2019 and May 2020, was the driver to write this review. The objective was to increase health care providers' diagnostic curiosity and to bring the attentiveness of public health advisors for prevention, control and the development of schemes for surveillance of Orf zoonosis in a similar setting like Ethiopia.
Collapse
Affiliation(s)
- Tesfaye Kassa
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
7
|
Ozdogan CY, Kenar H, Davun KE, Yucel D, Doger E, Alagoz S. An in vitro 3D diabetic human skin model from diabetic primary cells. Biomed Mater 2020; 16:015027. [PMID: 33331294 DOI: 10.1088/1748-605x/abc1b1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus, a complex metabolic disorder, leads to many health complications like kidney failure, diabetic heart disease, stroke, and foot ulcers. Treatment approaches of diabetes and identification of the mechanisms underlying diabetic complications of the skin have gained importance due to continued rapid increase in the diabetes incidence. A thick and pre-vascularized in vitro 3D type 2 diabetic human skin model (DHSM) was developed in this study. The methacrylated gelatin (GelMA) hydrogel was produced by photocrosslinking and its pore size (54.85 ± 8.58 μm), compressive modulus (4.53 ± 0.67 kPa) and swelling ratio (17.5 ± 2.2%) were found to be suitable for skin tissue engineering. 8% GelMA hydrogel effectively supported the viability, spreading and proliferation of human dermal fibroblasts. By isolating dermal fibroblasts, human umbilical vein endothelial cells and keratinocytes from type 2 diabetic patients, an in vitro 3D type 2 DHSM, 12 mm in width and 1.86 mm thick, was constructed. The skin model consisted of a continuous basal epidermal layer and a dermal layer with blood capillary-like structures, ideal for evaluating the effects of anti-diabetic drugs and wound healing materials and factors. The functionality of the DHSM was showed by applying a therapeutic hydrogel into its central wound; especially fibroblast migration to the wound site was evident in 9 d. We have demonstrated that DHSM is a biologically relevant model with sensitivity and predictability in evaluating the diabetic wound healing potential of a therapeutic material.
Collapse
Affiliation(s)
- Candan Yilmaz Ozdogan
- Experimental and Clinical Research Center, Diabetes and Obesity Research Laboratory, Kocaeli University, Kocaeli, Turkey. Department of Biology, Graduate School of Natural and Applied Sciences, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | | | |
Collapse
|