1
|
Walton JR, Lindahl PA. Basic pathway decomposition of biochemical reaction networks within growing cells. iScience 2024; 27:108506. [PMID: 38161422 PMCID: PMC10757263 DOI: 10.1016/j.isci.2023.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 01/03/2024] Open
Abstract
This contribution treats linear, steady-state dynamics for a metabolic network within a growing cell. Admissible steady-state reaction fluxes are assumed to form a pointed, convex, polyhedral, conical subset of the stoichiometric null-space. A solution of the problem is defined to consist of a linear basis for the stoichiometric null-space consisting of admissible fluxes called basic pathways. The algorithm used to construct the set of basic pathways scales as a polynomial of the system size in contrast to the NP-hard algorithms employed in the traditional notions of solution named extreme pathways, elementary flux modes, MEMos, and MinSpan, and that therefore suffer from the curse of dimensionality. The basic pathways approach is applied to a metabolic network consisting of a simplified version of the TCA cycle coupled to glycolysis highlighting that each basic pathway has a readily understood chemical interpretation. Generic admissible pathways are simply expressed in terms of basic pathways.
Collapse
Affiliation(s)
- Jay R. Walton
- Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
| | - Paul A. Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Chung DJ, Madison GP, Aponte AM, Singh K, Li Y, Pirooznia M, Bleck CKE, Darmani NA, Balaban RS. Metabolic design in a mammalian model of extreme metabolism, the North American least shrew (Cryptotis parva). J Physiol 2022; 600:547-567. [PMID: 34837710 PMCID: PMC10655134 DOI: 10.1113/jp282153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial adaptations are fundamental to differentiated function and energetic homeostasis in mammalian cells. But the mechanisms that underlie these relationships remain poorly understood. Here, we investigated organ-specific mitochondrial morphology, connectivity and protein composition in a model of extreme mammalian metabolism, the least shrew (Cryptotis parva). This was achieved through a combination of high-resolution 3D focused ion beam electron microscopy imaging and tandem mass tag mass spectrometry proteomics. We demonstrate that liver and kidney mitochondrial content are equivalent to the heart, permitting assessment of mitochondrial adaptations in different organs with similar metabolic demand. Muscle mitochondrial networks (cardiac and skeletal) are extensive, with a high incidence of nanotunnels - which collectively support the metabolism of large muscle cells. Mitochondrial networks were not detected in the liver and kidney as individual mitochondria are localized with sites of ATP consumption. This configuration is not observed in striated muscle, likely due to a homogeneous ATPase distribution and the structural requirements of contraction. These results demonstrate distinct, fundamental mitochondrial structural adaptations for similar metabolic demand that are dependent on the topology of energy utilization process in a mammalian model of extreme metabolism. KEY POINTS: Least shrews were studied to explore the relationship between metabolic function, mitochondrial morphology and protein content in different tissues. Liver and kidney mitochondrial content and enzymatic activity approaches that of the heart, indicating similar metabolic demand among tissues that contribute to basal and maximum metabolism. This allows an examination of mitochondrial structure and composition in tissues with similar maximum metabolic demands. Mitochondrial networks only occur in striated muscle. In contrast, the liver and kidney maintain individual mitochondria with limited reticulation. Muscle mitochondrial reticulation is the result of dense ATPase activity and cell-spanning myofibrils which require networking for adequate metabolic support. In contrast, liver and kidney ATPase activity is localized to the endoplasmic reticulum and basolateral membrane, respectively, generating a locally balanced energy conversion and utilization. Mitochondrial morphology is not driven by maximum metabolic demand, but by the cytosolic distribution of energy-utilizing systems set by the functions of the tissue.
Collapse
Affiliation(s)
- Dillon J. Chung
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Grey P. Madison
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angel M. Aponte
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Komudi Singh
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuesheng Li
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mehdi Pirooznia
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher K. E. Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Robert S. Balaban
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Priami C. Computational approaches to understanding nutrient metabolism and metabolic disorders. Curr Opin Biotechnol 2020; 70:7-14. [PMID: 33038781 DOI: 10.1016/j.copbio.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Computational methods are becoming more and more essential to elucidate biological systems. Many different approaches exist with pros and cons. This paper reviews the most useful technologies focusing on nutrient metabolism and metabolic disorders. Space limitation prevents from exploring the examples in details, but pointers to the relevant papers are reported.
Collapse
Affiliation(s)
- Corrado Priami
- Dipartimento di Informatica, Università di Pisa, Largo Pontecorvo, 56124 Pisa, Italy.
| |
Collapse
|