1
|
Joosten MDW, Clabbers JMK, Jonca N, Mazereeuw-Hautier J, Gostyński AH. New developments in the molecular treatment of ichthyosis: review of the literature. Orphanet J Rare Dis 2022; 17:269. [PMID: 35840979 PMCID: PMC9287901 DOI: 10.1186/s13023-022-02430-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Ichthyosis covers a wide spectrum of diseases affecting the cornification of the skin. In recent years, new advances in understanding the pathophysiology of ichthyosis have been made. This knowledge, combined with constant development of pathogenesis-based therapies, such as protein replacement therapy and gene therapy, are rather promising for patients with inherited skin diseases. Several ongoing trials are investigating the potency of these new approaches and various studies have already been published. Furthermore, a lot of case series report that biological therapeutics are effective treatment options, mainly for Netherton syndrome and autosomal recessive congenital ichthyosis. It is expected that some of these new therapies will prove their efficacy and will be incorporated in the treatment of ichthyosis.
Collapse
Affiliation(s)
- M D W Joosten
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands
| | - J M K Clabbers
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands.,Department of Dermatology, Haga Hospital, The Hague, The Netherlands
| | - N Jonca
- Cell Biology and Cytology Laboratory, CNRS, Inserm, UPS, European Reference Network - Skin, University Hospital Center of Toulouse and Infinity, Federal Biology Institute, Toulouse University, Toulouse, France
| | - J Mazereeuw-Hautier
- Department of Dermatology, European Reference Network - Skin, University Hospital Center of Toulouse, Toulouse, France
| | - A H Gostyński
- Department of Dermatology, The Netherlands and European Reference Network - Skin, Maastricht University Medical Center, Maastricht, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Molecular Dynamics Study of Citrullinated Proteins Associated with the Development of Rheumatoid Arthritis. Proteomes 2022; 10:proteomes10010008. [PMID: 35225987 PMCID: PMC8884019 DOI: 10.3390/proteomes10010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Biological activity regulation by protein post-translational modification (PTM) is critical for cell function, development, differentiation, and survival. Dysregulation of PTM proteins is present in various pathological conditions, including rheumatoid arthritis (RA). RA is a systemic autoimmune disease that primarily affects joints, and there are three main types of protein PTMs associated with the development of this disease, namely, glycosylation, citrullination, and carbamylation. Glycosylation is important for the processing and presentation of antigen fragments on the cell surface and can modulate immunoglobulin activity. The citrullination of autoantigens is closely associated with RA, as evidenced by the presence of antibodies specific to citrullinated proteins in the serum of patients. Carbamylation and dysregulation have recently been associated with RA development in humans.In this study, we performed an overview analysis of proteins with post-translational modifications associated with the development of RA adverted in peer-reviewed scientific papers for the past 20 years. As a result of the search, a list of target proteins and corresponding amino acid sequences with PTM in RA was formed. Structural characteristics of the listed modified proteins were extracted from the Protein Data Bank. Then, molecular dynamics experiments of intact protein structures and corresponding structures with PTMs were performed regarding structures in the list announced in the ProtDB service. This study aimed to conduct a molecular dynamics study of intact proteins and proteins, including post-translational modification and protein citrullination, likely associated with RA development. We observed another exhibition of the fundamental physics concept, symmetry, at the submolecular level, unveiled as the autonomous repetitions of outside the protein structural motif performance globule corresponding to those in the whole protein molecule.
Collapse
|
3
|
de Veer SJ, White AM, Craik DJ. Sunflower Trypsin Inhibitor-1 (SFTI-1): Sowing Seeds in the Fields of Chemistry and Biology. Angew Chem Int Ed Engl 2020; 60:8050-8071. [PMID: 32621554 DOI: 10.1002/anie.202006919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Nature-derived cyclic peptides have proven to be a vast source of inspiration for advancing modern pharmaceutical design and synthetic chemistry. The focus of this Review is sunflower trypsin inhibitor-1 (SFTI-1), one of the smallest disulfide-bridged cyclic peptides found in nature. SFTI-1 has an unusual biosynthetic pathway that begins with a dual-purpose albumin precursor and ends with the production of a high-affinity serine protease inhibitor that rivals other inhibitors much larger in size. Investigations on the molecular basis for SFTI-1's rigid structure and adaptable function have planted seeds for thought that have now blossomed in several different fields. Here we survey these applications to highlight the growing potential of SFTI-1 as a versatile template for engineering inhibitors, a prototypic peptide for studying inhibitory mechanisms, a stable scaffold for grafting bioactive peptides, and a model peptide for evaluating peptidomimetic motifs and platform technologies.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Veer SJ, White AM, Craik DJ. Der Sonnenblumen‐Trypsin‐Inhibitor 1 (SFTI‐1) in der Chemie und Biologie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Simon J. Veer
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - Andrew M. White
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
5
|
Gitlin-Domagalska A, Maciejewska A, Dębowski D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals (Basel) 2020; 13:E421. [PMID: 33255583 PMCID: PMC7760496 DOI: 10.3390/ph13120421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.
Collapse
Affiliation(s)
| | | | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.G.-D.); (A.M.)
| |
Collapse
|
6
|
Wei W, Ma J, Xie D, Zhou Y. Linking inhibitor motions to proteolytic stability of sunflower trypsin inhibitor-1. RSC Adv 2019; 9:13776-13786. [PMID: 35519558 PMCID: PMC9063939 DOI: 10.1039/c9ra02114k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The remarkable capability of an enzyme isn't only determined by its active site but also controlled by the environment. To unravel the environment role in catalysis, the dynamic motions as well as the static mechanism need to be studied. In this work, QM/MM MD simulations were employed to study the proteolysis process of SFTI-1 and BiKF, which revealed that a combination of static non-bonded interactions and dynamic motions along the reaction coordinate can account for the different hydrolysis rates between them. A comparison among SFTI-1 and three analogs with similar non-bonded interactions further revealed a positive correlation between the mobility of inhibitors and the hydrolysis rates. Apart from the cyclic backbone and disulfide bond, intramolecular hydrogen bonds also increase the rigidity of the backbone of inhibitors, and therefore hinder inhibitor motions to resist proteolysis. These new detailed mechanistic insights suggest the need to consider inhibitor motions in the rational design of peptide inhibitors. Besides the non-bonded interactions, inhibitor motions especially rotation of the scissile bond also influence proteolytic stability.![]()
Collapse
Affiliation(s)
- Wanqing Wei
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Li CY, de Veer SJ, White AM, Chen X, Harris JM, Swedberg JE, Craik DJ. Amino Acid Scanning at P5' within the Bowman-Birk Inhibitory Loop Reveals Specificity Trends for Diverse Serine Proteases. J Med Chem 2019; 62:3696-3706. [PMID: 30888159 DOI: 10.1021/acs.jmedchem.9b00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) is a 14-amino acid cyclic peptide that shares an inhibitory loop with a sequence and structure similar to a larger family of serine protease inhibitors, the Bowman-Birk inhibitors. Here, we focus on the P5' residue in the Bowman-Birk inhibitory loop and produce a library of SFTI variants to characterize the P5' specificity of 11 different proteases. We identify seven amino acids that are generally preferred by these enzymes and also correlate with P5' sequence diversity in naturally occurring Bowman-Birk inhibitors. Additionally, we show that several enzymes have divergent specificities that can be harnessed in engineering studies. By optimizing the P5' residue, we improve the potency or selectivity of existing inhibitors for kallikrein-related peptidase 5 and show that a variant with substitutions at 7 of the scaffold's 14 residues retains a similar structure to SFTI-1. These findings provide new insights into P5' specificity requirements for the Bowman-Birk inhibitory loop.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Andrew M White
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Xingchen Chen
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Brisbane QLD 4059 , Australia
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Brisbane QLD 4059 , Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| |
Collapse
|