1
|
Milovanova E, Gomon S, Rocha G. Classic lattice corneal dystrophy: a brief review and summary of treatment modalities. Graefes Arch Clin Exp Ophthalmol 2024; 262:1667-1681. [PMID: 37934291 DOI: 10.1007/s00417-023-06297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
PURPOSE To provide a brief summary and comparison of the most recent literature on available and theorized treatment modalities for classic lattice corneal dystrophy (LCD). This paper aims to support practitioners in their management of this disease. METHODS A search was carried out on available literature through PubMed and Google Scholar of English language articles up to January 2023 that relate to the treatment of LCD. Due to scarcity of literature regarding specific novel therapies for LCD, results from other corneal pathologies (granular corneal dystrophy, corneal scarring) are sometimes included for contrast, which is clearly denoted. RESULTS LCD is a slowly progressive disease that leads to recurrent epithelial corneal erosions, stromal haze, corneal opacification, substantial discomfort, and visual impairment. Due to its autosomal-dominant inheritance pattern, this disease can persist throughout ancestral lines and requires consistent treatment and follow-up. An optimal management plan is necessary to (1) prolong years of life with best achievable visual acuity; (2) treat painful recurrent corneal erosions as they occur; (3) ensure proper follow-up throughout the life of a patient, as well as monitor at-risk offspring; and (4) monitor efficacy of treatment. CONCLUSIONS This paper addresses (1) treatment for early disease including corneal epithelial debridement, photo therapeutic keratectomy (PTK), femtosecond laser-assisted lamellar keratectomy (FLK), and others; (2) treatment for late disease including full thickness keratoplasties and anterior lamellar keratoplasties; and (3) potential future treatment considerations including a wide variety of topical/systemic, genetic, and regenerative approaches.
Collapse
Affiliation(s)
- Ekaterina Milovanova
- Department of Ophthalmology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Stanislav Gomon
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guillermo Rocha
- Department of Ophthalmology & Visual Sciences, McGill University, Montréal, Canada
| |
Collapse
|
2
|
Chang MS, Jun I, Kim EK. Mini-Review: Clinical Features and Management of Granular Corneal Dystrophy Type 2. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:340-347. [PMID: 37336511 PMCID: PMC10427907 DOI: 10.3341/kjo.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant corneal stromal dystrophy that is caused by p.Arg124His mutation of transforming growth factor β induced (TGFBI) gene. It is characterized by well demarcated granular shaped opacities in central anterior stroma and as the disease progresses, extrusion of the deposits results in ocular pain due to corneal epithelial erosion. Also, diffuse corneal haze which appears late, causes decrease in visual acuity. The prevalence of GCD2 is high in East Asia including Korea. Homozygous patients show a severe phenotype from an early age, and the heterozygote phenotype varies among patients, depending on several types of compound heterozygous TGFBI mutations. In the initial stage, conservative treatments such as artificial tears, antibiotic eye drops, and bandage contact lenses are used to treat corneal erosion. Different surgical methods are used depending on the depth and extent of the stromal deposits. Phototherapeutic keratectomy removes anterior opacities and is advantageous in terms of its applicability and repeatability. For deeper lesions, deep anterior lamellar keratoplasty can be used as the endothelial layer is not always affected. Recurrence following these treatments are reported within a wide range of rates in different studies due to varying definition of recurrence and follow-up period. In patients who have undergone corneal laser vision-correction surgeries such as photorefractive keratectomy, LASEK, or LASIK including SMILE surgery, corneal opacity exacerbates rapidly with severe deterioration of visual acuity. Further investigations on new treatments of GCD2 are necessary.
Collapse
Affiliation(s)
- Myung Soo Chang
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul,
Korea
| | - Ikhyun Jun
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul,
Korea
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul,
Korea
- Saevit Eye Hospital, Goyang,
Korea
| |
Collapse
|
3
|
In situ transduction of cells in human corneal limbus using adeno-associated viruses: an ex vivo study. Sci Rep 2022; 12:22481. [PMID: 36577775 PMCID: PMC9797548 DOI: 10.1038/s41598-022-26926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to evaluate the efficacy of in situ adeno-associated virus (AAV)-mediated gene delivery into the human corneal limbal region via targeted sub-limbal injection technique. Human cadaveric corneal tissues were fixed on an artificial anterior chamber. Feasibility of sub-limbal injection technique was tested using trypan blue and black India ink. An enhanced green fluorescent protein (eGFP) encoding AAV DJ was injected into sub-limbal region. After AAV injection, corneal tissues were incubated in air-lift culture and prepared for immunohistochemical analysis. Cell survivial and expression of eGFP, stem cell markers (p63α and cytokeratin 19 (KRT19)), and differentiation marker cytokeratin 3 (KRT3) were evaluated using confocal microscopy. Both trypan blue and black India ink stained and were retained sub-limbally establishing specificity of the injection technique. Immunohistochemical analysis of corneas injected with AAV DJ-eGFP indicated that AAV-transduced cells in the limbal region co-express eGFP, p63α, and KRT19 and that these transduced cells were capable of differentiating to KRT3 postitive corneal epithelial cells. Our sub-limbal injection technique can target cells in the human limbus in a reproducible and efficient manner. Thus, we demonstrate that in situ injection of corneal limbus may provide a feasible mode of genetic therapy for corneal disorders with an epithelial etiology.
Collapse
|
4
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|