1
|
Abu Rabe D, Chdid L, Lamson DR, Laudeman CP, Tarpley M, Elsayed N, Smith GR, Zheng W, Dixon MS, Williams KP. Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells. Molecules 2024; 29:3095. [PMID: 38999049 PMCID: PMC11243198 DOI: 10.3390/molecules29133095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.
Collapse
Affiliation(s)
- Dina Abu Rabe
- INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Christopher P Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Naglaa Elsayed
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Ginger R Smith
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
2
|
Volnitskiy A, Shabalin K, Pantina R, Varfolomeeva E, Kovalev R, Burdakov V, Emelianova S, Garaeva L, Yakimov A, Sogoyan M, Filatov M, Konevega AL, Shtam T. OCT4 Expression in Gliomas Is Dependent on Cell Metabolism. Curr Issues Mol Biol 2024; 46:1107-1120. [PMID: 38392188 PMCID: PMC10887564 DOI: 10.3390/cimb46020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
The OCT4 transcription factor is necessary to maintain cell stemness in the early stages of embryogenesis and is involved in the formation of induced pluripotent stem cells, but its role in oncogenesis is not yet entirely clear. In this work, OCT4 expression was investigated in malignant gliomas. Twenty glioma cell lines and a sample of normal adult brain tissue were used. OCT4 expression was found in all studied glioma cell lines but was not detected in normal adult brain tissue. For one of these lines, OCT4 knockdown caused tumor cell death. By varying the culture conditions of these cells, we unexpectedly found that OCT4 expression increased when cells were incubated in serum-free medium, and this effect was significantly enhanced in serum-free and L-glutamine-free medium. L-glutamine and the Krebs cycle, which is slowed down in serum-free medium according to our NMR data, are sources of α-KG. Thus, our data indicate that OCT4 expression in gliomas may be regulated by the α-KG-dependent metabolic reprogramming of cells.
Collapse
Affiliation(s)
- Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Rimma Pantina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Elena Varfolomeeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Roman Kovalev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Svetlana Emelianova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Alexander Yakimov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Marina Sogoyan
- H.Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Parkovaya 64-68, Pushkin, 196603 St. Petersburg, Russia
| | - Michael Filatov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
3
|
Tran NH, Ryzhov V, Volnitskiy A, Amerkanov D, Pack F, Golubev AM, Arutyunyan A, Spitsyna A, Burdakov V, Lebedev D, Konevega AL, Shtam T, Marchenko Y. Radiosensitizing Effect of Dextran-Coated Iron Oxide Nanoparticles on Malignant Glioma Cells. Int J Mol Sci 2023; 24:15150. [PMID: 37894830 PMCID: PMC10606998 DOI: 10.3390/ijms242015150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The potential of standard methods of radiation therapy is limited by the dose that can be safely delivered to the tumor, which could be too low for radical treatment. The dose efficiency can be increased by using radiosensitizers. In this study, we evaluated the sensitizing potential of biocompatible iron oxide nanoparticles coated with a dextran shell in A172 and Gl-Tr glioblastoma cells in vitro. The cells preincubated with nanoparticles for 24 h were exposed to ionizing radiation (X-ray, gamma, or proton) at doses of 0.5-6 Gy, and their viability was assessed by the Resazurin assay and by staining of the surviving cells with crystal violet. A statistically significant effect of radiosensitization by nanoparticles was observed in both cell lines when cells were exposed to 35 keV X-rays. A weak radiosensitizing effect was found only in the Gl-Tr line for the 1.2 MeV gamma irradiation and there was no radiosensitizing effect in both lines for the 200 MeV proton irradiation at the Bragg peak. A slight (ca. 10%) increase in the formation of additional reactive oxygen species after X-ray irradiation was found when nanoparticles were present. These results suggest that the nanoparticles absorbed by glioma cells can produce a significant radiosensitizing effect, probably due to the action of secondary electrons generated by the magnetite core, whereas the dextran shell of the nanoparticles used in these experiments appears to be rather stable under radiation exposure.
Collapse
Affiliation(s)
- Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
| | - Vyacheslav Ryzhov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Dmitry Amerkanov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Fedor Pack
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Aleksander M. Golubev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Alexandr Arutyunyan
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Anastasiia Spitsyna
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Yaroslav Marchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| |
Collapse
|
4
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
6
|
Shtam T, Burdakov V, Garina A, Garaeva L, Tran NH, Volnitskiy A, Kuus E, Amerkanov D, Pack F, Andreev G, Lubinskiy A, Shabalin K, Verlov N, Ivanov E, Ezhov V, Lebedev D, Konevega AL. Experimental validation of proton boron capture therapy for glioma cells. Sci Rep 2023; 13:1341. [PMID: 36693879 PMCID: PMC9873635 DOI: 10.1038/s41598-023-28428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Proton boron capture therapy (PBCT) has emerged from particle acceleration research for enhancing the biological effectiveness of proton therapy. The mechanism responsible for the dose increase was supposed to be related to proton-boron fusion reactions (11B + p → 3α + 8.7 MeV). There has been some experimental evidence that the biological efficiency of protons is significantly higher for boron-11-containing prostate or breast cancer cells. The aim of this study was to evaluate the sensitizing potential of sodium borocaptate (BSH) under proton irradiation at the Bragg peak of cultured glioma cells. To address this problem, cells of two glioma lines were preincubated with 80 or 160 ppm boron-11, irradiated both at the middle of 200 MeV beam Spread-Out Bragg Peak (SOBP) and at the distal end of the 89.7 MeV beam SOBP and assessed for the viability, as well as their ability to form colonies. Our results clearly show that BSH provides for only a slight, if any, enhancement of the effect of proton radiation on the glioma cells in vitro. In addition, we repeated the experiments using the Du145 prostate cancer cell line, for which an increase in the biological efficiency of proton irradiation in the presence of sodium borocaptate was demonstrated previously. The data presented add new argument against the efficiency of proton boron capture therapy when based solely on direct dose-enhancement effect by the proton capture nuclear reaction, underlining the need to investigate the indirect effects of the secondary alpha irradiation depending on the state and treatment conditions of the irradiated tissue.
Collapse
Affiliation(s)
- Tatiana Shtam
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300. .,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182. .,Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Alina Garina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Eva Kuus
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation.,Proton Therapy Center MIBS, St. Petersburg, Russian Federation
| | - Dmitry Amerkanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Fedor Pack
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Georgy Andreev
- Proton Therapy Center MIBS, St. Petersburg, Russian Federation
| | | | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Nicolay Verlov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Evgeniy Ivanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300
| | - Victor Ezhov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300. .,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182. .,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation.
| |
Collapse
|
7
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
8
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|
9
|
Henao-Restrepo J, Caro-Urrego YA, Barrera-Arenas LM, Arango-Viana JC, Bermudez-Munoz M. Expression of activator proteins of SHH/GLI and PI3K/Akt/mTORC1 signaling pathways in human gliomas is associated with high grade tumors. Exp Mol Pathol 2021; 122:104673. [PMID: 34371011 DOI: 10.1016/j.yexmp.2021.104673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Recent findings have demonstrated a synergic crosstalk between SHH/GLI and PI3K/Akt/mTORC1 signaling in glioblastoma progression cells in vitro and in tumors in mice, but it is not known if this also occurs in human gliomas. We then aimed to investigate the expression of key proteins of these pathways in different human gliomas. The expression of PTEN, phospho-Akt (Ser473), phospho-S6K1 (Thr389), SHH, GLI1, GLI2 and GLI3 was assessed by immunohistochemistry in gliomas and in control brain tissues. The pattern of expression of each protein was established according to glioma type, glioma grade and to cell type; the relative expression of each protein was used to perform statistical analyses. We found that the expression of proteins of both signaling pathways differs between normal brain and glioma tissues. For instance, normal astrocytes had a different protein expression pattern compared with reactive and tumoral astrocytes. Interestingly, we detected a recurrent pattern of expression of GLI3 in oligodendrocytes and of phospho-S6K1 in mitotic neoplastic cells. We also identified differences of cell signaling according to glioma type: oligodendrogliomas and ependymomas are related with the expression of SHH/GLI proteins. Finally, we detected that high grade gliomas statistically correlate with the expression of GLI1 and GLI2, and that GLI1, GLI2, phospho-Akt and phospho-S6K1 are more expressed in patients with less survival, suggesting that activation of these cell signaling influences glioma outcome and patient survival. In summary, our results show that proteins of PI3K/Akt/mTORC1 and SHH/GLI pathways are differentially expressed in human gliomas according to tumor type and grade, and suggest that the activation of these signaling networks is associated with glioma progression.
Collapse
Affiliation(s)
- Julián Henao-Restrepo
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 #53-108, 050010 Medellín, Colombia.
| | - Yudys Anggelly Caro-Urrego
- Department of Pathology, Faculty of Medicine, University of Antioquia, Cra. 51d #62-29, 050010 Medellín, Colombia
| | - Lina Marcela Barrera-Arenas
- Grupo de Investigaciones Biomédicas, Health Sciences Faculty, University Corporation Remington, Calle 51 #51-27, Medellín, Colombia.
| | - Juan Carlos Arango-Viana
- Department of Pathology, Faculty of Medicine, University of Antioquia, Cra. 51d #62-29, 050010 Medellín, Colombia.
| | - Maria Bermudez-Munoz
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 #53-108, 050010 Medellín, Colombia.
| |
Collapse
|
10
|
Dusek CO, Hadden MK. Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin Drug Discov 2020; 16:289-302. [PMID: 33006903 DOI: 10.1080/17460441.2021.1832078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION GLI1 is a transcription factor that has been identified as a downstream effector for multiple tumorigenic signaling pathways. These include the Hedgehog, RAS-RAF-MEK-ERK, and PI3K-AKT-mTOR pathways, which have all been separately validated as individual anti-cancer drug targets. The identification of GLI1 as a key transcriptional regulator for each of these pathways highlights its promise as a therapeutic target. Small molecule GLI1 inhibitors are potentially efficacious against human malignancies arising from multiple oncogenic mechanisms. AREAS COVERED This review provides an overview of the key oncogenic cellular pathways that regulate GLI1 transcriptional activity. It also provides a detailed account of small molecule GLI1 inhibitors that are currently under development as potential anti-cancer chemotherapeutics. EXPERT OPINION Interest in developing inhibitors of GLI1-mediated transcription has significantly increased as its role in multiple oncogenic signaling pathways has been elucidated. To date, it has proven difficult to directly target GLI1 with small molecules, and the majority of compounds that inhibit GLI1 activity function through indirect mechanisms. To date, no direct-acting GLI1 inhibitor has entered clinical trials. The identification and development of new scaffolds that can bind and directly inhibit GLI1 are essential to further advance this class of chemotherapeutics.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Naryzhny S, Volnitskiy A, Kopylov A, Zorina E, Kamyshinsky R, Bairamukov V, Garaeva L, Shlikht A, Shtam T. Proteome of Glioblastoma-Derived Exosomes as a Source of Biomarkers. Biomedicines 2020; 8:E216. [PMID: 32708613 PMCID: PMC7399833 DOI: 10.3390/biomedicines8070216] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EV) are involved in important processes of glioblastoma multiforme (GBM), including malignancy and invasion. EV secreted by glioblastoma cells may cross the hematoencephalic barrier and carry molecular cargo derived from the tumor into the peripheral circulation. Therefore, the determination of the molecular composition of exosomes released by glioblastoma cells seems to be a promising approach for the development of non-invasive methods of the detection of the specific exosomal protein markers in the peripheral blood. The present study aimed to determine the common exosomal proteins presented in preparations from different cell lines and search potential glioblastoma biomarkers in exosomes. We have performed proteomics analysis of exosomes obtained from the conditioned culture medium of five glioblastoma cell lines. A list of 133 proteins common for all these samples was generated. Based on the data obtained, virtual two-dimensional electrophoresis (2DE) maps of proteins presented in exosomes of glioblastoma cells were constructed and the gene ontology (GO) analysis of exosome proteins was performed. A correlation between overexpressed in glial cell proteins and their presence in exosomes have been found. Thus, the existence of many potential glioblastoma biomarkers in exosomes was confirmed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Arthur Kopylov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
| | - Elena Zorina
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ’Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141700 Moscow, Russia
| | - Viktor Bairamukov
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Peter the Great Saint-Petersburg Polytechnic University, Politehnicheskaya 29, 19525 St. Petersburg, Russia
| | - Anatoly Shlikht
- Far Eastern Federal University, Sukhanova 8, 690091 Vladivostok, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| |
Collapse
|
12
|
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings. MATERIALS 2020; 13:ma13092087. [PMID: 32369952 PMCID: PMC7254194 DOI: 10.3390/ma13092087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
Abstract
The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T ≈ 8 nm and a width W ≈ 50 nm, and with a developed specific surface SBET ≈ 260 m2·g−1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to ≈ 100 m2·g−1. Atomic force and scanning electron microscopy images showed BC microstructure “loosening“after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.
Collapse
|