1
|
Adhiambo EF, Gouagna LC, Owino EA, Mutuku F, Getahun MN, Torto B, Tchouassi DP. Polymer Beads Increase Field Responses to Host Attractants in the Dengue Vector Aedes aegypti. J Chem Ecol 2024; 50:654-662. [PMID: 38532168 DOI: 10.1007/s10886-024-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
This study investigates the efficacy of three different olfactory cues - cyclohexanone, linalool oxide (LO), and 6-methyl-5-heptan-2-one (sulcatone) - in attracting Aedes aegypti, the primary vector of dengue, using BG sentinel traps in a dengue-endemic area (urban Ukunda) in coastal Kenya. Two experiments were conducted. Experiment 1 compared solid formulations of the compounds in polymer beads against liquid formulations with hexane as the solvent. CO2-baited traps served as controls. In Experiment 2, traps were baited with each compound in the polymer beads, commercial BG-Lure, and CO2. Our results indicate that CO2-baited traps recorded the greatest Ae. aegypti captures in both Experiment 1 and 2, whereas trap captures with polymer beads and solvent-based treatments were comparable. In experiment 2, polymer bead-based treatments yielded significantly greater female captures, each recording ~ 2-fold more captures than traps baited with the BG-Lure. There was no significant difference, however, between the treatments. Female Ae. aegypti captured in CO2-baited traps were mainly unfed (91%), with fewer gravid mosquitoes (6.4%) compared to traps with test compounds (range; 12.7-21.1%). Male captures were lower in LO and BG-Lure baited traps compared to other treatments. Gravimetric analysis showed LO had a slower release rate compared to other compounds. The findings suggest that host-associated compounds loaded on polymer beads are more effective in trapping Ae. aegypti than commercial BG-Lure and reveal sex-specific differences in mosquito responses. These results have implications for mosquito surveillance and control programs, highlighting the potential for selective trapping strategies.
Collapse
Affiliation(s)
- Elizabeth F Adhiambo
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
- Faculty of Science and Technology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | | | - Eunice A Owino
- Faculty of Science and Technology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | | | - Merid N Getahun
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
2
|
de Jesús Crespo R, Pavlakis A, Breaux J, Riegel C. Discarded vehicle tires and their association with mosquito vector abundance across socioenvironmental gradients in New Orleans, LA. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1240-1250. [PMID: 39096529 DOI: 10.1093/jme/tjae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
Discarded vehicle tires serve as habitat for mosquito vectors. In New Orleans, Louisiana, discarded tires are an increasingly important public concern, especially considering that the city is home to many medically important mosquito species. Discarded tires are known to be associated with mosquito abundance, but how their presence interacts with other socioenvironmental gradients to influence mosquito ecology is poorly understood. Here, we ask whether discarded tire distribution could be explained by social factors, particularly median income, home vacancy and human population density, and whether these factors interact with urban heat islands (UHI) to drive mosquito vector assemblages. We surveyed tire piles across the city and adult mosquitoes in 12 sites, between May and October of 2020. We compared this data with the social indicators selected and UHI estimates. Our results show that median income and human population density were inversely related to tire abundance. Tire abundance was positively associated with Aedes albopictus abundance in places of low heat (LS) severity. Heat was the only predictor for the other monitored species, where high heat corresponded to higher abundance of Aedes aegypti, and LS to higher abundance of Culex quinquefasciatus. Our results suggest that low-income, sparsely populated neighborhoods of New Orleans may be hotspots for discarded vehicle tires, and are associated with higher abundances of at least one medically important mosquito (Ae. albopictus). These findings suggest potential locations for prioritizing source reduction efforts to control mosquito vectors and highlight discarded tires as a potential exposure pathway to unequal disease risk for low-income residents.
Collapse
Affiliation(s)
| | - Alexandros Pavlakis
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| | - Jennifer Breaux
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| | - Claudia Riegel
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| |
Collapse
|
3
|
Ortega-López LD, Betancourth MP, León R, Kohl A, Ferguson HM. Behaviour and distribution of Aedes aegypti mosquitoes and their relation to dengue incidence in two transmission hotspots in coastal Ecuador. PLoS Negl Trop Dis 2024; 18:e0010932. [PMID: 38683840 PMCID: PMC11081501 DOI: 10.1371/journal.pntd.0010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/09/2024] [Accepted: 02/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Dengue (DENV) transmission is endemic throughout coastal Ecuador, showing heterogeneous incidence patterns in association with fine-scale variation in Aedes aegypti vector populations and other factors. Here, we investigated the impact of micro-climate and neighbourhood-level variation in urbanization on Aedes abundance, resting behaviour and associations with dengue incidence in two endemic areas. METHODOLOGY/PRINCIPAL FINDINGS Aedes aegypti were collected in Quinindé and Portoviejo, two urban cantons with hyperendemic dengue transmission in coastal Ecuador. Aedes vectors were sampled in and around houses within urban and peri-urban neighbourhoods at four time periods. We tested for variation in vector abundance and resting behaviour in relation to neighbourhood urbanization level and microclimatic factors. Aedes abundance increased towards the end of the rainy season, was significantly higher in Portoviejo than in Quinindé, and in urban than in peri-urban neighbourhoods. Aedes vectors were more likely to rest inside houses in Portoviejo but had similar abundance in indoor and outdoor resting collections in Quinindé. Over the study period, DENV incidence was lower in Quinindé than in Portoviejo. Relationships between weekly Ae. aegypti abundance and DENV incidence were highly variable between trapping methods; with positive associations being detected only between BG-sentinel and outdoor Prokopack collections. CONCLUSIONS/SIGNIFICANCE Aedes aegypti abundance was significantly higher in urban than peri-urban neighbourhoods, and their resting behaviour varied between study sites. This fine-scale spatial heterogeneity in Ae. aegypti abundance and behaviour could generate site-specific variation in human exposure and the effectiveness of indoor-based interventions. The trap-dependent nature of associations between Aedes abundance and local DENV incidence indicates further work is needed to identify robust entomological indicators of infection risk.
Collapse
Affiliation(s)
- Leonardo D. Ortega-López
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Mauro Pazmiño Betancourth
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Renato León
- Laboratorio de Entomología Médica & Medicina Tropical LEMMT, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Heather M. Ferguson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Ojianwuna CC, Enwemiwe VN, Egwunyenga AO, Agboro A, Owobu E. Sampling efficiency and screening of Aedes albopictus for yellow fever virus in Niger Delta region of Nigeria. Pan Afr Med J 2024; 47:120. [PMID: 38828420 PMCID: PMC11143074 DOI: 10.11604/pamj.2024.47.120.39462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Aedes albopictus, like Aedes aegypti, is a virulent vector of arboviruses especially the well-documented spread of yellow fever around the world. Although yellow fever is prevalent in Nigeria, there is a paucity of information in the Niger Delta region on the distribution of Aedes mosquito vectors and molecular detection of the virus in infected mosquitoes. This study sampled Aedes mosquitoes around houses associated with farms from four communities (Otolokpo, Ute-Okpu, Umunede, and Ute Alohen) in Ika North-East Local Government Area of Delta State, Nigeria. Methods various sampling methods were used in Aedes mosquito collection to test their efficacy in the survey. Mosquitoes in holding cages were killed by freezing and morphologically identified. A pool of 15 mosquitoes per Eppendorf tube was preserved in RNAi later for yellow fever virus screening. Two samples were molecularly screened for each location. Results seven hundred and twenty-five (725) mosquitoes were obtained from the various traps. The mean abundance of the mosquitoes was highest in m-HLC (42.9) compared to the mosquitoes sampled using other techniques (p<0.0001). The mean abundance of mosquitoes was lowest in Center for Disease Control (CDC) light traps without attractant (0.29). No yellow fever virus strain was detected in all the mosquitoes sampled at the four locations. Conclusion this study suggests that Aedes albopictus are the mosquitoes commonly biting around houses associated with farms. More so, yellow fever virus was not detected in the mosquitoes probably due to the mass vaccination exercise that was carried out the previous year in the study area. More studies are required using the m-HLC to determine the infection rate in this endemic area.
Collapse
Affiliation(s)
- Chioma Cynthia Ojianwuna
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Victor Ngozi Enwemiwe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Andy Ogochukwu Egwunyenga
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Akwilla Agboro
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Emmanuel Owobu
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
5
|
Gual-Gonzalez L, Dye-Braumuller K, Warner A, Bunting T, Bryant D, Connelly R, Burkhalter K, Nolan MS. Do Aedes triseriatus Respect State Boundaries?: A Paucity of La Crosse Virus in the South Carolina Appalachian Mountains. Vector Borne Zoonotic Dis 2024; 24:129-134. [PMID: 37906122 DOI: 10.1089/vbz.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Background: La Crosse virus is an important endemic public health concern in the North Carolina Appalachian Mountains; however, human incidence is not commonly noted in this region on the South Carolina side of the mountain range border. No relevant studies have been performed in South Carolina evaluating mosquito vector populations for La Crosse virus (LACV) infection; thus, a pilot mosquito surveillance study was executed in summer 2020. Material and Methods: Vector surveillance occurred at five South Carolina state parks bordering neighboring state endemic counties from May to August 2020. Collections were approved by the state park authority, as noted in Permit No. N-8-20. Results: All three competent mosquito vectors were collected during the study duration; however, these vectors were collected in low abundance: Aedes triseriatus (4.5% of all collected mosquitos); Aedes albopictus (2.0%); Aedes japonicus (1.4%). Principal mosquito vector specimens, Ae. triseriatus, were sent to Centers for Disease Control and Prevention for testing of LACV by real-time reverse transcription PCR-all were negative. Discussion: While entomologic evidence suggests low transmission risk for this arbovirus in the South Carolina Appalachian Mountain region, further eco-epidemiologic investigations are warranted to understand this endemicity variance within a relatively small geographic area.
Collapse
Affiliation(s)
- Lídia Gual-Gonzalez
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Kyndall Dye-Braumuller
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Aiden Warner
- School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tyler Bunting
- School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Dillon Bryant
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Roxanne Connelly
- Arboviral Diseases Branch, Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Kristy Burkhalter
- Arboviral Diseases Branch, Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Melissa S Nolan
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
6
|
Yaren O, McCarter J, Morris AR, Bradley KM, Karalkar NB, McLendon DC, Kim D, Eastmond BH, Burkett-Cadena ND, Alto BW, Benner SA. Multiplex Surveillance Kit Using Sweetened Solid Support to Detect Arboviruses Isothermally in Mosquito Saliva from the Field. Anal Chem 2023; 95:10736-10743. [PMID: 37390024 DOI: 10.1021/acs.analchem.3c01735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Recently reported "displaceable probe" loop amplification (DP-LAMP) architecture has shown to amplify viral RNA from SARS-CoV-2 with little sample processing. The architecture allows signals indicating the presence of target nucleic acids to be spatially separated, and independent in sequence, from the complicated concatemer that LAMP processes create as part of their amplification process. This makes DP-LAMP an attractive molecular strategy to integrate with trap and sampling innovations to detect RNA from arboviruses carried by mosquitoes in the field. These innovations include (a) development of organically produced carbon dioxide with ethylene carbonate as a bait deployable in mosquito trap, avoiding the need for dry ice, propane tanks, or inorganic carbonates and (b) a process that induces mosquitoes to lay virus-infected saliva on a quaternary ammonium-functionalized paper (Q-paper) matrix, where (c) the matrix (i) inactivates the deposited viruses, (ii) releases their RNA, and (iii) captures viral RNA in a form that keeps it stable for days at ambient temperatures. We report this integration here, with a surprisingly simple workflow. DP-LAMP with a reverse transcriptase was found to amplify arboviral RNA directly from Q-paper, without requiring a separate elution step. This capture-amplification-detection architecture can be multiplexed, with the entire system integrated into a device that can support a campaign of surveillance, in the wild outdoors, that reports the prevalence of arboviruses from field-captured mosquitoes.
Collapse
Affiliation(s)
- Ozlem Yaren
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615-9495, United States
- Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| | - Jacquelyn McCarter
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615-9495, United States
- Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| | - Andrew R Morris
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615-9495, United States
- College of Medicine, University of Florida, Gainesville, Florida 32611,, USA
| | - Kevin M Bradley
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615-9495, United States
| | - Nilesh B Karalkar
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615-9495, United States
| | - Daniel C McLendon
- Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| | - Dongmin Kim
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida 32962-4699, United States
| | - Bradley H Eastmond
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida 32962-4699, United States
- Thermo Fisher Scientific, Frederick, Maryland 02451, USA
| | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida 32962-4699, United States
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida 32962-4699, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615-9495, United States
- Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| |
Collapse
|
7
|
Bisia M, Papadopoulos P, Filis S, Beleri S, Tegos N, Lamprou GK, Balatsos G, Papachristos D, Michaelakis A, Patsoula E. Field Evaluation of Commonly Used Adult Mosquito Traps in Greece. Vector Borne Zoonotic Dis 2023; 23:119-128. [PMID: 36888960 DOI: 10.1089/vbz.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Background: Entomological monitoring activities are a major part of mosquito and mosquito-borne diseases surveillance. Several trapping methods are implemented worldwide, aiming to gather data on species composition and their abundance in various study areas. Methods: Several methodological modifications, such as trapping systems baited with attractants or carbon dioxide, have been proposed to increase trap efficiency. The aim of this study was to test different trap types, commonly used in Greece to collect mosquitoes, with the addition of the Biogents Sentinel lure. Moreover, traps were placed in two distinct land types and two different heights above the ground to compare their efficacy. West Nile Virus is endemic in Greece, so we also aimed to detect viral presence and circulation in selected mosquito pools. Results: Adult mosquitoes of Aedes albopictus, Culex pipiens s.l., and Culiseta longiareolata were collected in both study areas. The trap type had a significant impact on the total collections, while the trap position and interaction between trap and position did not significantly affect mosquito catches. WNV was detected in Cx. pipiens s.l. pools examined from the two study areas. Conclusion: This study emphasizes the role of trapping methods as a key component for monitoring and surveillance of adult mosquito populations, reflecting that several trap types present with different mosquito species capture and catch rates.
Collapse
Affiliation(s)
- Marina Bisia
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Pavlos Papadopoulos
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| | - Stelios Filis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece.,Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Beleri
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| | - Nikolaos Tegos
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| | - George K Lamprou
- Laboratory of Organic Chemical Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Georgios Balatsos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Dimitrios Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Eleni Patsoula
- Department of Public Health Policy, School of Public Health, University of West Attika, Athens, Greece
| |
Collapse
|
8
|
Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti. Acta Trop 2023; 239:106837. [PMID: 36657506 DOI: 10.1016/j.actatropica.2023.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida, and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In this paper, we develop a deterministic mosquito population model, estimate model parameters by using local entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.
Collapse
|
9
|
Nanfack-Minkeu F, Delong A, Luri M, Poelstra JW. Invasive Aedes japonicus Mosquitoes Dominate the Aedes Fauna Collected with Gravid Traps in Wooster, Northeastern Ohio, USA. INSECTS 2023; 14:56. [PMID: 36661984 PMCID: PMC9861081 DOI: 10.3390/insects14010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Aedes japonicus (Diptera: Culicidae), or the Asian rock pool mosquito, is an invasive mosquito in Europe and America. It was first detected outside of Asia in 1990 in Oceania. It has since expanded to North America and Europe in 1998 and 2000, respectively. Even though it is classified as a secondary vector of pathogens, it is competent to several arboviruses and filarial worms, and it is contributing to the transmission of La Crosse virus (LACV) and West Nile virus (WNV). In this study, CDC light, BG-sentinel, and gravid traps were used to collect mosquitoes between June and October 2021, in Wooster, Northeastern Ohio, USA. Morphological identification or/and Sanger sequencing were performed to identify the collected mosquitoes. Our results revealed that (adult) Ae. japonicus mosquitoes were the most abundant mosquito species collected with gravid traps in Wooster in 2021, confirming its establishment in Ohio. Molecular analyses of Ae. japonicus showed 100% nucleotide similarity with Ae. japonicus collected in Iowa (USA) and Canada, suggesting multiple introductions. Its presence may increase the risk of future arbovirus outbreaks in Wooster, Ohio. This study stresses the importance of actively monitoring the density and distribution of all members of the Ae. japonicus complex.
Collapse
Affiliation(s)
| | - Alexander Delong
- Biochemistry & Molecular Biology Program, The College of Wooster, Wooster, OH 44691, USA
| | - Moses Luri
- Departments of Economics, and Mathematical and Computational Sciences, The College of Wooster, Wooster, OH 44691, USA
- Department of Mathematical and Computational Sciences, The College of Wooster, Wooster, OH 44691, USA
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
10
|
Wilke ABB, Mhlanga A, Kummer AG, Vasquez C, Moreno M, Petrie WD, Rodriguez A, Vitek C, Hamer GL, Mutebi JP, Ajelli M. Diel activity patterns of vector mosquito species in the urban environment: Implications for vector control strategies. PLoS Negl Trop Dis 2023; 17:e0011074. [PMID: 36701264 PMCID: PMC9879453 DOI: 10.1371/journal.pntd.0011074] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Mathematical models have been widely used to study the population dynamics of mosquitoes as well as to test and validate the effectiveness of arbovirus outbreak responses and mosquito control strategies. The objective of this study is to assess the diel activity of mosquitoes in Miami-Dade, Florida, and Brownsville, Texas, the most affected areas during the Zika outbreak in 2016-2017, and to evaluate the effectiveness of simulated adulticide treatments on local mosquito populations. To assess variations in the diel activity patterns, mosquitoes were collected hourly for 96 hours once a month from May through November 2019 in Miami-Dade County, Florida, and Brownsville, Texas. We then performed a PERMANOVA followed by a SIMPER analysis to assess whether the abundance and species richness significantly varies at different hours of the day. Finally, we used a mathematical model to simulate the population dynamics of 5 mosquito vector species and evaluate the effectiveness of the simulated adulticide applications. A total of 14,502 mosquitoes comprising 17 species were collected in Brownsville and 10,948 mosquitoes comprising 19 species were collected in Miami-Dade County. Aedes aegypti was the most common mosquito species collected every hour in both cities and peaking in abundance in the morning and the evening. Our modeling results indicate that the effectiveness of adulticide applications varied greatly depending on the hour of the treatment. In both study locations, 9 PM was the best time for adulticide applications targeting all mosquito vector species; mornings/afternoons (9 AM- 5 PM) yielded low effectiveness, especially for Culex species, while at night (12 AM- 6 AM) the effectiveness was particularly low for Aedes species. Our results indicate that the timing of adulticide spraying interventions should be carefully considered by local authorities based on the ecology of the target mosquito species in the focus area.
Collapse
Affiliation(s)
- André B. B. Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Adequate Mhlanga
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Allisandra G. Kummer
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Art Rodriguez
- Public Health Department, City of Brownsville, Brownsville, Texas, United States of America
| | - Christopher Vitek
- Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John-Paul Mutebi
- Arboviral Diseases Branch (ADB), Division of Vector-Borne Diseases (DVBD), Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, United States of America
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| |
Collapse
|
11
|
Alexander J, Wilke ABB, Mantero A, Vasquez C, Petrie W, Kumar N, Beier JC. Using machine learning to understand microgeographic determinants of the Zika vector, Aedes aegypti. PLoS One 2022; 17:e0265472. [PMID: 36584050 PMCID: PMC9803113 DOI: 10.1371/journal.pone.0265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
There are limited data on why the 2016 Zika outbreak in Miami-Dade County, Florida was confined to certain neighborhoods. In this research, Aedes aegypti, the primary vector of Zika virus, are studied to examine neighborhood-level differences in their population dynamics and underlying processes. Weekly mosquito data were acquired from the Miami-Dade County Mosquito Control Division from 2016 to 2020 from 172 traps deployed around Miami-Dade County. Using random forest, a machine learning method, predictive models of spatiotemporal dynamics of Ae. aegypti in response to meteorological conditions and neighborhood-specific socio-demographic and physical characteristics, such as land-use and land-cover type and income level, were created. The study area was divided into two groups: areas affected by local transmission of Zika during the 2016 outbreak and unaffected areas. Ae. aegypti populations in areas affected by Zika were more strongly influenced by 14- and 21-day lagged weather conditions. In the unaffected areas, mosquito populations were more strongly influenced by land-use and day-of-collection weather conditions. There are neighborhood-scale differences in Ae. aegypti population dynamics. These differences in turn influence vector-borne disease diffusion in a region. These results have implications for vector control experts to lead neighborhood-specific vector control strategies and for epidemiologists to guide vector-borne disease risk preparations, especially for containing the spread of vector-borne disease in response to ongoing climate change.
Collapse
Affiliation(s)
- Jagger Alexander
- University of Miami Department of Public Health, Miami, FL, United States of America
- * E-mail:
| | - André Barretto Bruno Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, United States of America
| | - Alejandro Mantero
- University of Miami Department of Public Health, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Naresh Kumar
- University of Miami Department of Public Health, Miami, FL, United States of America
| | - John C. Beier
- University of Miami Department of Public Health, Miami, FL, United States of America
| |
Collapse
|
12
|
McMahon A, França CMB, Wimberly MC. Comparing Satellite and Ground-Based Measurements of Environmental Suitability for Vector Mosquitoes in an Urban Landscape. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1936-1946. [PMID: 36189969 PMCID: PMC9667728 DOI: 10.1093/jme/tjac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 06/16/2023]
Abstract
Exposure to mosquito-borne diseases is influenced by landscape patterns and microclimates associated with land cover. These influences can be particularly strong in heterogeneous urban landscapes where human populations are concentrated. We investigated how land cover and climate influenced abundances of Ae. albopictus (Skuse) (Diptera: Culicidae) and Cx. quinquefasciatus (Say) (Diptera: Culicidae) in Norman, Oklahoma (United States). From June-October 2019 and May-October 2020 we sampled mosquitoes along an urban-rural gradient using CO2 baited BG Sentinel traps. Microclimate sensors at these sites measured temperature and humidity. We mapped environmental variables using satellite images from Landsat, Sentinel-2, and VIIRS, and the CHIRPS rainfall dataset. We also obtained meteorological data from the closest weather station. We compared statistical models of mosquito abundance based on microclimate, satellite, weather station, and land cover data. Mosquitoes were more abundant on trap days with higher temperature and relative humidity. Rainfall 2 wk prior to the trap day negatively affected mosquito abundances. Impervious surface cover was positively associated with Cx. quinquefasciatus and tree cover was negatively associated with Ae. albopictus. Among the data sources, models based on satellite variables and land cover data had the best fits for Ae. albopictus (R2 = 0.7) and Cx. quinquefasciatus (R2 = 0.51). Models based on weather station or microclimate data had weaker fits (R2 between 0.09 and 0.17) but were improved by adding land cover variables (R2 between 0.44 and 0.61). These results demonstrate the potential for using satellite remote sensing for mosquito habitat analyses in urban areas.
Collapse
Affiliation(s)
- Andrea McMahon
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman OK, USA
| | - Caio M B França
- Department of Biology, Southern Nazarene University, Bethany, OK, USA
- Quetzal Education and Research Center, Southern Nazarene University, San Gerardo de Dota, Costa Rica
| | | |
Collapse
|
13
|
Claudel I, Brouazin R, Lancelot R, Gouagna LC, Dupraz M, Baldet T, Bouyer J. Optimization of adult mosquito trap settings to monitor populations of Aedes and Culex mosquitoes, vectors of arboviruses in La Reunion. Sci Rep 2022; 12:19544. [PMID: 36380224 PMCID: PMC9666360 DOI: 10.1038/s41598-022-24191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Competent arbovirus vectors are found in the culicid mosquito fauna of south-west Indian Ocean (SWIO) islands. In La Reunion, Aedes albopictus and Aedes aegypti mosquitoes are known vectors of dengue and chikungunya viruses. Culex quinquefasciatus is a potential vector of Rift Valley fever and West Nile viruses. To prepare a vector-control field trial against Ae. aegypti, this study aimed at identifying the best trapping strategy to catch adult Ae. aegypti, using BG-Sentinel traps (Biogents, Germany). It was implemented in two sites in southern La Reunion. Catches of Ae. albopictus and Cx. quinquefasciatus mosquitoes were also recorded. A Latin square design was used to estimate the detection probability and the apparent daily density-according to the BG-Sentinel trapping strategy: none, carbon dioxide (CO2), a commercial attractant-BG-Lure (Biogents, Germany), or both. The use of CO2 alone was associated with a higher detection probability for Ae. aegypti and Cx. quinquefasciatus mosquitoes, as well as a large increase in their apparent density. Traps with BG-Lure-alone or in combination with CO2, did not improve the detection probability of Ae. aegypti and Cx. quinquefasciatus mosquitoes. The same result was found for male Ae. albopictus. For females, baiting BG-Sentinel traps with CO2 or BG-Lure had no significant effect. The same apparent densities were found for Ae. aegypti and Ae. albopictus mosquitoes in both study sites-where Ae. aegypti mosquitoes were found at very low densities during previous surveys.
Collapse
Affiliation(s)
- Iris Claudel
- grid.121334.60000 0001 2097 0141UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, 97410 Saint-Pierre, La Réunion France
| | - Ronan Brouazin
- grid.121334.60000 0001 2097 0141UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, 97410 Saint-Pierre, La Réunion France
| | - Renaud Lancelot
- grid.121334.60000 0001 2097 0141UMR Astre (Animals, Health, Territories, Risks, Ecosystems), Cirad, Inrae, Univ. Montpellier, 34398 Montpellier, France ,grid.8183.20000 0001 2153 9871Cirad, UMR Astre, 97491 Sainte Clotilde, La Réunion France
| | | | - Marlène Dupraz
- grid.121334.60000 0001 2097 0141UMR Astre (Animals, Health, Territories, Risks, Ecosystems), Cirad, Inrae, Univ. Montpellier, 34398 Montpellier, France ,grid.8183.20000 0001 2153 9871Cirad, UMR Astre, 97491 Sainte Clotilde, La Réunion France
| | - Thierry Baldet
- grid.121334.60000 0001 2097 0141UMR Astre (Animals, Health, Territories, Risks, Ecosystems), Cirad, Inrae, Univ. Montpellier, 34398 Montpellier, France ,grid.8183.20000 0001 2153 9871Cirad, UMR Astre, 97491 Sainte Clotilde, La Réunion France
| | - Jérémy Bouyer
- grid.121334.60000 0001 2097 0141UMR Astre (Animals, Health, Territories, Risks, Ecosystems), Cirad, Inrae, Univ. Montpellier, 34398 Montpellier, France ,grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria
| |
Collapse
|
14
|
Entomological Surveillance of Aedes Mosquitoes: Comparison of Different Collection Methods in an Endemic Area in RIO de Janeiro, Brazil. Trop Med Infect Dis 2022; 7:tropicalmed7070114. [PMID: 35878126 PMCID: PMC9324765 DOI: 10.3390/tropicalmed7070114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Using collection methods for Aedes adults as surveillance tools provides reliable indices and arbovirus detection possibilities. This study compared the effectiveness of different methods for collecting Ae. aegypti and Ae. albopictus and detecting arboviruses circulating in field-caught female specimens. Collection sites were defined in urban, peri-urban, and rural landscapes in two Brazilian cities. Collections were performed using Adultraps (ADT), BG-Sentinel (BGS), CDC-like traps (CDC), and indoor (ASP-I) and outdoor (ASP-O) aspiration during the rainy and dry seasons of 2015 and 2016. Generalized linear mixed models were used to model the effectiveness of each collection method. A total of 434 Ae. aegypti and 393 Ae. albopictus were collected. In total, 64 Ae. aegypti and sixteen Ae. albopictus female pools were tested for DENV, CHIKV, ZIKV, or YFV; none were positive. Positivity and density were linear at low densities (<1 specimen); thereafter, the relationship became non-linear. For Ae. aegypti, ADT and CDC were less effective, and ASP-I and ASP-O were as effective as BGS. For Ae. albopictus, all collection methods were less effective than BGS. This study highlights the need for an integrated surveillance method as an effective tool for monitoring Aedes vectors.
Collapse
|
15
|
Proof of Concept of Biopolymer Based Hydrogels as Biomimetic Oviposition Substrate to Develop Tiger Mosquitoes (Aedes albopictus) Cost-Effective Lure and Kill Ovitraps. Bioengineering (Basel) 2022; 9:bioengineering9070267. [PMID: 35877317 PMCID: PMC9312165 DOI: 10.3390/bioengineering9070267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Pest management is looking for green and cost-effective innovative solutions to control tiger mosquitoes and other pests. By using biomimetic principles and biocompatible/biodegradable biopolymers, it could be possible to develop a new approach based on substrates that selectively attract insects by reproducing specific natural environmental conditions and then kill them by hosting and delivering a natural biopesticide or through mechanical action (biomimetic lure and kill approach, BL&K). Such an approach can be theoretically specialized against tiger mosquitoes (BL&K-TM) by designing hydrogels to imitate the natural oviposition site’s conditions to employ them inside a lure and kill ovitraps as a biomimetic oviposition substrate. In this work, the hydrogels have been prepared to prove the concept. The study compares lab/on-field oviposition between standard substrates (absorbing paper/masonite) and a physical and chemically crosslinked hydrogel composition panel. Then the best performing is characterized to evaluate a correlation between the hydrogel’s properties and oviposition. Tests identify a 2-Hydroxyethylcellulose (HEC)-based physical hydrogel preparation as five times more attractive than the control in a lab oviposition assay. When employed on the field in a low-cost cardboard trap, the same substrate is seven times more capturing than a standard masonite ovitrap, with a duration four times longer.
Collapse
|
16
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Mosquito surveillance in maritime entry ports in Miami-Dade County, Florida to increase preparedness and allow the early detection of invasive mosquito species. PLoS One 2022; 17:e0267224. [PMID: 35427409 PMCID: PMC9012365 DOI: 10.1371/journal.pone.0267224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive mosquito vector species have been inadvertently transported to new areas by humans for decades. Strong evidence supports that monitoring maritime, terrestrial, and aerial points of entry is an essential part of the effort to curb the invasion and establishment of invasive vector mosquito species. Miami-Dade County, Florida is an important operational hub for the cruise ship industry and leisure boats that routinely visit nearby areas in the Caribbean, and freight cargo ships transporting goods from Miami-Dade to Caribbean countries and vice versa. To deal with the increasing public health concern, we hypothesized that mosquito surveillance in small- and medium-sized maritime ports of entry in Miami-Dade is crucial to allow the early detection of invasive mosquito species. Therefore, we have selected 12 small- and medium-sized maritime ports of entry in Miami-Dade County with an increased flow of people and commodities that were not covered by the current mosquito surveillance system. Collection sites were comprised of two distinct environments, four marinas with international traffic of leisure boats, and eight maintenance and commercial freight cargo ship ports. Mosquitoes were collected weekly at each of the 12 collection sites for 24 hours for 6 weeks in the Spring and then for 6 additional weeks in the Summer using BG-Sentinel traps. A total of 32,590 mosquitoes were collected, with Culex quinquefasciatus and Aedes aegypti being the most abundant species totaling 19,987 and 11,247 specimens collected, respectively. Our results show that important mosquito vector species were present in great numbers in all of the 12 maritime ports of entry surveyed during this study. The relative abundance of Cx. quinquefasciatus and Ae. aegypti was substantially higher in the commercial freight cargo ship ports than in the marinas. These results indicate that even though both areas are conducive for the proliferation of vector mosquitoes, the port area in the Miami River is especially suitable for the proliferation of vector mosquitoes. Therefore, this potentially allows the establishment of invasive mosquito species inadvertently brought in by cargo freights.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
17
|
Evaluating sampling strategies for enzootic Venezuelan equine encephalitis virus vectors in Florida and Panama. PLoS Negl Trop Dis 2022; 16:e0010329. [PMID: 35417476 PMCID: PMC9007344 DOI: 10.1371/journal.pntd.0010329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Determining effective sampling methods for mosquitoes are among the first objectives in elucidating transmission cycles of vector-borne zoonotic disease, as the effectiveness of sampling methods can differ based on species, location, and physiological state. The Spissipes section of the subgenus Melanoconion of Culex represents an understudied group of mosquitoes which transmit Venezuelan equine encephalitis viruses (VEEV) in the Western Hemisphere. The objective of this study was to determine effective collection methods that target both blood-engorged and non-engorged females of the Spissipes section of Culex subgenus Melanoconion to test the hypothesis that favorable trapping methods differ between species and by physiological status within a species. Mosquitoes were collected using two commercially available traps, (CDC-light trap and BG-Sentinel trap), two novel passive traps (a novel mosquito drift fence and pop-up resting shelters), and two novel aspirators, (a small-diameter aspirator and a large-diameter aspirator) in Darién, Panama, and Florida, USA. The total number of female mosquitoes collected for each species was compared using rarefaction curves and diversity metrics. We also compared the utility of each trap for collecting total females and blood-engorged females of four Spissipes section mosquito species in Florida and Darién. In Darién, it was found that both blood-engorged and unfed females of Cx. pedroi were most effectively collected using the mosquito drift fence at 57.6% and 61.7% respectively. In contrast, the most unfed Cx. spissipes were collected using the mosquito drift fence (40.7%) while blood-engorged females were collected effectively by pop-up resting shelters (42.3%). In Florida, the best sampling technique for the collection of blood-engorged Cx. panocossa was the large diameter aspirator at 41.9%, while the best trap for collecting Cx. cedecei was the pop-up resting shelter at 45.9%. For unfed female Spissipes section mosquitoes in Florida, the CDC light trap with CO2 collected 84.5% and 98.3% of Cx. cedecei and Cx. panocossa respectively in Florida. Rarefaction analysis, and both the Shannon and Simpsons diversity indices all demonstrated that the mosquito drift fence was capable of collecting the greatest diversity of mosquito species regardless of location. The finding that the proportions of unfed and blood-engorged mosquitoes collected by traps differed both among and between species has implications for how studies of VEEV vectors will be carried out in future investigations. In Florida a combination of pop-up resting shelters and use of a large-diameter aspirator would be optimal for the collection of both VEEV vectors for host-use studies. Results demonstrate that traps can be constructed from common materials to collect mosquitoes for VEEV vector studies and could be assessed for their utilization in vectors of other systems as well. Unfortunately, no single method was effective for capturing all species and physiological states, highlighting a particular need for assessing trap utility for target species of a study. Venezuelan equine encephalitis virus is a potentially deadly human pathogen that is transmitted by an understudied group of tropical mosquitoes (Spissipes section of the Culex subgenus Melanoconion). These mosquitoes reside in swamps and jungles, and are challenging to identify, so studying their biology and importance in transmitting VEEV has been neglected. To further our understanding of VEEV, we compared six novel and commercially available traps to determine which traps are best for capturing these species in Panama and Florida. We found that several different types of traps are effective for collecting blood-engorged females of different species of VEEV vectors, and that traps utilized for collecting unfed specimens are not necessarily the same traps one should use for collecting blood-engorged females of the same species. Results of this study will enable researchers to better capture these important disease vectors, particularly those that are blood-engorged, which will allow researchers to determine host associations necessary for understanding VEEV transmission. This information can be used to make decisions on controlling vector species.
Collapse
|
18
|
Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX. Sci Rep 2022; 12:5315. [PMID: 35351905 PMCID: PMC8964714 DOI: 10.1038/s41598-022-06586-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The diel biting activity of Aedes (Stegomyia) aegypti (L) populations was extensively investigated in the early 1900s to gain more information on the biology of Ae. aegypti, and this information was used to devise effective approaches to controlling populations of this species and protect the human population from widespread arbovirus outbreaks. However, few contemporary studies are available regarding the diel activity patterns of Ae. aegypti. To assess the diel activity patterns of Ae. aegypti in southern Florida and Texas, we conducted 96-h uninterrupted mosquito collections once each month from May through November 2019 in Miami, Florida, and Brownsville, Texas, using BG-Sentinel 2 Traps. The overall diel activity pattern in both cities was bimodal with morning and evening peak activity between 7:00 and 8:00 and between 19:00 and 20:00. There were significant daily, monthly, seasonal, and site-specific differences in activity patterns, but these differences did not affect the overall peak activity times. These differences suggest daily, monthly, seasonal, and site-specific variations in human exposure to Ae. aegypti. Our observations can be used in planning and executing Ae. aegypti vector control activities in southern Florida and southern Texas, specifically those targeting the adult mosquito populations.
Collapse
|
19
|
Friuli M, Cafarchia C, Lia RP, Otranto D, Pombi M, Demitri C. From tissue engineering to mosquitoes: biopolymers as tools for developing a novel biomimetic approach to pest management/vector control. Parasit Vectors 2022; 15:79. [PMID: 35248154 PMCID: PMC8898440 DOI: 10.1186/s13071-022-05193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pest management has been facing the spread of invasive species, insecticide resistance phenomena, and concern for the impact of chemical pesticides on human health and the environment. It has tried to deal with them by developing technically efficient and economically sustainable solutions to complement/replace/improve traditional control methods. The renewal has been mainly directed towards less toxic pesticides or enhancing the precision of their delivery to reduce the volume employed and side effects through lure-and-kill approaches based on semiochemicals attractants. However, one of the main pest management problems is that efficacy depends on the effectiveness of the attractant system, limiting its successful employment to semiochemical stimuli-responsive insects. Biomaterial-based and bioinspired/biomimetic solutions that already guide other disciplines (e.g., medical sciences) in developing precision approaches could be a helpful tool to create attractive new strategies to liberate precision pest management from the need for semiochemical stimuli, simplify their integration with bioinsecticides, and foster the use of still underemployed solutions. Approach proposed We propose an innovative approach, called “biomimetic lure-and-kill”. It exploits biomimetic principles and biocompatible/biodegradable biopolymers (e.g., natural hydrogels) to develop new substrates that selectively attract insects by reproducing specific natural environmental conditions (biomimetic lure) and kill them by hosting and delivering a natural biopesticide or through mechanical action. Biomimetic lure-and-kill-designed substrates point to provide a new attractive system to develop/improve and make more cost-competitive new and conventional devices (e.g. traps). A first example application is proposed using the tiger mosquito Aedes albopictus as a model. Conclusions Biomaterials, particularly in the hydrogel form, can be a useful tool for developing the biomimetic lure-and-kill approach because they can satisfy multiple needs simultaneously (e.g., biomimetic lure, mechanical lethality, biocompatibility, and bioinsecticide growth). Such an approach might be cost-competitive, and with the potential for applicability to several pest species. Moreover, it is already technically feasible, since all the technologies necessary to design and configure materials with specific characteristics are already available on the market. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100, Lecce, Italy
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Marco Pombi
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Università Di Roma "Sapienza", Rome, Italy.
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100, Lecce, Italy
| |
Collapse
|
20
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit Vectors 2022; 15:51. [PMID: 35135589 PMCID: PMC8822692 DOI: 10.1186/s13071-022-05172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vector-borne diseases are a major burden to public health. Controlling mosquitoes is considered the most effective way to prevent vector-borne disease transmission. Mosquito surveillance is a core component of integrated vector management, as surveillance programs are often the cornerstone for the development of mosquito control operations. Two traps are the most commonly used for the surveillance of adult mosquitoes: Centers for Disease Control and Prevention miniature light trap (CDC light trap) and BG-Sentinel trap (BioGents, Regensburg, Germany). However, despite the importance of the BG-Sentinel trap in surveillance programs in the United States, especially in the Southern states, its effectiveness in consistently and reliably collecting mosquitoes in rural and natural areas is still unknown. We hypothesized that BG-Sentinel and CDC light traps would be more attractive to specific mosquito species present in rural and natural areas. Therefore, our objective was to compare the relative abundance, species richness, and community composition of mosquitoes collected in natural and rural areas by BG-Sentinel and CDC light traps. METHODS Mosquitoes were collected from October 2020 to March 2021 using BG-Sentinel and CDC light traps baited with dry ice, totaling 105 trap-nights. RESULTS The BG-Sentinel traps collected 195,115 mosquitoes comprising 23 species from eight genera, and the CDC light traps collected 188,594 mosquitoes comprising 23 species from eight genera. The results from the permutational multivariate analysis of variance (PERMANOVA) and generalized estimating equation model for repeated measures indicate the BG-Sentinel and CDC light traps had similar sampling power. CONCLUSION Even though BG-Sentinel traps had a slightly better performance, the difference was not statistically significant indicating that both traps are suitable to be used in mosquito surveillance in rural and natural areas.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| | | | | | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | | | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
21
|
Degener CM, Staunton KM, Bossin H, Marie J, da Silva RD, Lima DC, Eiras ÁE, Akaratovic KI, Kiser J, Gordon SW. Evaluation of the New Modular Biogents BG-Pro Mosquito Trap in Comparison to CDC, EVS, BG-Sentinel, and BG-Mosquitaire Traps. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2021; 37:224-241. [PMID: 34817602 DOI: 10.2987/21-7003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mosquito surveillance is an essential component of mosquito control and mosquito traps are a universally employed tool to monitor adult populations. The objective of this paper was to evaluate the new modular Biogents BG-Pro mosquito trap (BGP) and compare its performance to 4 widely used traps for adult mosquitoes: the BG-Sentinel (BGS), the BG Mosquitaire (BGM), the CDC miniature light trap (CDC), and the encephalitis vector survey trap (EVS). One semi-field and 9 field Latin square trials were performed in 7 countries. Results showed that the collection performance of the BGP was equivalent to or exceeded that of the BGS, BGM, CDC, and EVS traps in head-to-head comparisons. The BGP uses 35% less power than the CDC and 75% less than the BGS and BGM. This lower power consumption allows it to run at 5 V for 2 days using a small lightweight 10,000-mAh rechargeable power bank. The BG-Pro is an excellent alternative for the surveillance of mosquito species that are usually monitored with BG-Sentinel, CDC, or EVS traps.
Collapse
|
22
|
Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Sci Rep 2021; 11:22989. [PMID: 34836970 PMCID: PMC8626430 DOI: 10.1038/s41598-021-02061-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Urbanization processes are increasing globally. Anthropogenic alterations in the environment have profound effects on biodiversity. Decreased biodiversity due to biotic homogenization processes as a consequence of urbanization often result in increased levels of mosquito vector species and vector-borne pathogen transmission. Understanding how anthropogenic alterations in the environment will affect the abundance, richness, and composition of vector mosquito species is crucial for the implementation of effective and targeted mosquito control strategies. We hypothesized that anthropogenic alterations in the environment are responsible for increasing the abundance of mosquito species that are adapted to urban environments such as Aedesaegypti and Culexquinquefasciatus. Therefore, our objective was to survey mosquito relative abundance, richness, and community composition in Miami-Dade County, Florida, in areas with different levels of urbanization. We selected 24 areas, 16 remote areas comprised of natural and rural areas, and 8 urban areas comprised of residential and touristic areas in Miami-Dade County, Florida. Mosquitoes were collected weekly in each area for 24 h for 5 consecutive weeks from August to October 2020 using BG-Sentinel traps baited with dry ice. A total of 36,645 mosquitoes were collected, from which 34,048 were collected in the remote areas and 2,597 in the urban areas. Our results show a clear and well-defined pattern of abundance, richness, and community composition according to anthropogenic modifications in land use and land cover. The more urbanized a given area the fewer species were found and those were primary vectors of arboviruses, Ae.aegypti and Cx.quinquefasciatus.
Collapse
|
23
|
Staunton KM, Goi J, Townsend M, Ritchie SA, Crawford JE, Snoad N, Karl S, Burkot TR. Effect of BG-Lures on the Male Aedes (Diptera: Culicidae) Sound Trap Capture Rates. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2425-2431. [PMID: 34240181 PMCID: PMC8577766 DOI: 10.1093/jme/tjab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
With global expansion of the two main vectors of dengue, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Aedes albopictus (Skuse, Diptera: Culicidae), there is a need to further develop cost-effective and user-friendly surveillance tools to monitor the population dynamics of these species. The abundance of Ae. aegypti and Ae. Albopictus, and associated bycatch captured by Male Aedes Sound Traps (MASTs) and BG-Sentinel (BGS) traps that were unbaited or baited with BG-Lures were compared in Cairns, Australia and Madang, Papua New Guinea. Mean male Ae. aegypti and Ae. albopictus catch rates in MASTs did not significantly differ when deployed with BG-Lures. Similarly, males of both these species were not sampled at statistically different rates in BGS traps with or without BG-Lures. However, MASTs with BG-Lures caught significantly less male Ae. aegypti than BGS traps baited with BG-Lures in Cairns, and MASTs without BG-Lures caught significantly more male Ae. albopictus than BGS traps without BG-Lures in Madang. Additionally, BG-Lures significantly increased female Ae. aegypti catch rates in BGS traps in Cairns. Lastly, bycatch capture rates in BGS traps were not significantly influenced by the addition of the BG-Lures. While this study provides useful information regarding the surveillance of Ae. aegypti and Ae. albopictus in these locations, further development and investigation is required to successfully integrate an olfactory lure into the MAST system.
Collapse
Affiliation(s)
- Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Joelyn Goi
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, 511 Madang Province, Papua New Guinea
| | - Michael Townsend
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | | | - Nigel Snoad
- Debug, Verily Life Sciences, South San Francisco, CA, USA
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, 511 Madang Province, Papua New Guinea
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| |
Collapse
|
24
|
Diouf G, Seck MT, Ciss M, Faye B, Biteye B, Bakhoum MT, Fall AG. Improving the efficiency of the BG sentinel 2 trap to assess the activity of Aedes (Stegomyia) aegypti [Linnaeus, 1762] in Senegal. Acta Trop 2021; 222:106065. [PMID: 34303690 DOI: 10.1016/j.actatropica.2021.106065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
The use of efficient mosquito sampling methods in vector surveillance programs is crucial to inform control actions and prevent outbreaks. amongst existing trapping methods, the BG sentinel trap is widely used for collecting mosquitoes from the subgenus Stegomyia. However, studies state that the BG-sentinel trap underestimates the relative abundance of mosquito vectors. In this study, we used mice to enhance the effectiveness of the BG-sentinel trap to collect Aedes aegypti (Linnaeus) and follow the species' daily abundance under local conditions. The Latin square method was used to compare different combinations in three different seasons. Of the 35,107 mosquitoes collected, Ae. aegypti (53.82%) and Culex quinquefasciatus (46.07%) were dominant. The combination of BG-Lure + 3 mice captured more Ae. aegypti individuals (apparent density per trap/day (ADT = 187.65 ± 133.53; p < 0.001) followed by the 3 mice-baited BG-sentinel trap (ADT = 163.47 ± 117.32), the BG-sentinel trap without attractant (ADT = 74.15 ± 117.07) and the BG-sentinel trap + BG-Lure (ADT = 47.1 ± 115.91). Aedes aegypti showed two peaks of activity in the day, one following the sunrise and one before the sunset, influenced by temperature and relative humidity. Our study suggests the use of mice to enhance the efficiency of the BG-Sentinel trap to catch Ae. aegypti. However, its application in large scale entomological monitoring programs should be difficult because of ethical and operational constraints.
Collapse
Affiliation(s)
- Gorgui Diouf
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal; Faculté des Sciences et Techniques, Département de Biologie Animale, Université Cheikh Anta Diop, BP 5005, Dakar, Senegal.
| | - Momar Talla Seck
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal
| | - Mamadou Ciss
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal
| | - Binetou Faye
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal
| | - Biram Biteye
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal
| | - Mame Thierno Bakhoum
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal
| | - Assane Guèye Fall
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l'Elevage et de Recherches Vétérinaires, Route du Front de Terre, BP 2057, Dakar, Senegal.
| |
Collapse
|
25
|
Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida. Sci Rep 2021; 11:14620. [PMID: 34272411 PMCID: PMC8285413 DOI: 10.1038/s41598-021-94202-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Species from the Culex coronator complex are Neotropical species and potential vectors of Saint Louis and West Nile viruses. Culex coronator was first described in Trinidad and Tobago in the early twentieth century and since then it has invaded and has been reported established in most countries of the Americas. Species from the Culex coronator complex were first detected in the United States in the state of Louisiana in 2004 and were subsequently detected in Florida in 2005, reaching Miami-Dade County in 2008. We hypothesize that species from the Cx. coronator complex are adapting to urban environments in Miami-Dade County, Florida, and are becoming more present and abundant in these areas. Therefore, our objective was to investigate the patterns of the presence and abundance of species from the Cx. coronator complex in the urban areas of Miami-Dade County. Here we used weekly data comprised of 32 CDC traps from 2012 to 2020 and 150 BG-Sentinel traps from 2016 to 2020. A total of 34,146 female mosquitoes from the Cx. coronator complex were collected, 26,138 by CDC traps and 8008 by BG-Sentinel traps. While the number of CDC traps that were positive was relatively constant at 26–30 positive traps per year, the number of positive BG-Sentinel traps varied substantially from 50 to 87 positive traps per year. Furthermore, the heat map and logistic general linear model for repeated measures analyses showed a significant increase in both the distribution and abundance of mosquitoes from the Cx. coronator complex, indicating that these species are becoming more common in anthropized habitats being able to thrive in highly urbanized areas. The increase in the distribution and abundance of species from the Cx. coronator complex is a major public health concern. The ability of species from the Cx. coronator complex to benefit from urbanization highlights the need to better understand the mechanisms of how invasive vector mosquito species are adapting and exploiting urban habitats.
Collapse
|
26
|
Staunton KM, Leiva D, Cruz A, Goi J, Arisqueta C, Liu J, Desnoyer M, Howell P, Espinosa F, Mendoza AC, Karl S, Crawford JE, Xiang W, Manrique-Saide P, Achee NL, Grieco JP, Ritchie SA, Burkot TR, Snoad N. Outcomes from international field trials with Male Aedes Sound Traps: Frequency-dependent effectiveness in capturing target species in relation to bycatch abundance. PLoS Negl Trop Dis 2021; 15:e0009061. [PMID: 33630829 PMCID: PMC7906331 DOI: 10.1371/journal.pntd.0009061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus vector dengue, chikungunya and Zika viruses. With both species expanding their global distributions at alarming rates, developing effective surveillance equipment is a continuing priority for public health researchers. Sound traps have been shown, in limited testing, to be highly species-specific when emitting a frequency corresponding to a female mosquito wingbeat. Determining male mosquito capture rates in sound traps based on lure frequencies in endemic settings is the next step for informed deployment of these surveillance tools. We field-evaluated Male Aedes Sound Traps (MASTs) set to either 450 Hz, 500 Hz, 550 Hz or 600 Hz for sampling Aedes aegypti and/or Aedes albopictus and compared catch rates to BG-Sentinel traps within Pacific (Madang, Papua New Guinea) and Latin American (Molas, Mexico and Orange Walk Town, Belize) locations. MASTs set to 450-550 Hz consistently caught male Ae. aegypti at rates comparable to BG-Sentinel traps in all locations. A peak in male Ae. albopictus captures in MASTs set at 550 Hz was observed, with the lowest mean abundance recorded in MASTs set to 450 Hz. While significantly higher abundances of male Culex were sampled in MASTs emitting lower relative frequencies in Molas, overall male Culex were captured in significantly lower abundances in the MASTs, relative to BG-Sentinel traps within all locations. Finally, significant differences in rates at which male Aedes and Culex were positively detected in trap-types per weekly collections were broadly consistent with trends in abundance data per trap-type. MASTs at 550 Hz effectively captured both male Ae. aegypti and Ae. albopictus while greatly reducing bycatch, especially male Culex, in locations where dengue transmission has occurred. This high species-specificity of the MAST not only reduces staff-time required to sort samples, but can also be exploited to develop an accurate smart-trap system-both outcomes potentially reducing public health program expenses.
Collapse
Affiliation(s)
- Kyran M. Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Donovan Leiva
- Belize Vector and Ecology Center (BVEC), Orange Walk Town, Belize, Central America
| | - Alvaro Cruz
- Belize Vector and Ecology Center (BVEC), Orange Walk Town, Belize, Central America
| | - Joelyn Goi
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Carlos Arisqueta
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Jianyi Liu
- Verily Life Sciences, San Francisco, California, United States of America
| | - Mark Desnoyer
- Verily Life Sciences, San Francisco, California, United States of America
| | - Paul Howell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Francia Espinosa
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Azael Che Mendoza
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Jacob E. Crawford
- Verily Life Sciences, San Francisco, California, United States of America
| | - Wei Xiang
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
| | - Pablo Manrique-Saide
- Collaborative Unit for Entomological Bioassays (UCBE) and the Laboratory of Biological Control for Ae. aegypti, Universidad Autónoma de Yucatán, Merida, México
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Thomas R. Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Nigel Snoad
- Verily Life Sciences, San Francisco, California, United States of America
| |
Collapse
|
27
|
Wilke ABB, Vasquez C, Carvajal A, Ramirez M, Cardenas G, Petrie WD, Beier JC. Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS One 2021; 16:e0246046. [PMID: 33493238 PMCID: PMC7833233 DOI: 10.1371/journal.pone.0246046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Current management and control of Aedes aegypti populations in urban areas are based on the spraying of insecticides. Here, we evaluated the effectiveness of spraying larvicide (Bacillus thuringiensis israelensis) using a truck-mounted Buffalo Turbine and adulticide (Deltamethrin) using a Grizzly ULV Sprayer in an urban area with high densities of Ae. aegypti and many cryptic and difficult to reach aquatic breeding habitats. Experiments were conducted in a tire shop located in Miami-Dade County, Florida with approximately 100,000 used airplane tires. Insecticide interventions were performed after a baseline survey consisting of 3 weeks of collections, followed by two insecticide interventions: (i) application of the adulticide followed by the application of larvicide on the subsequent week; and (ii) application of both adulticide and larvicide on two consecutive weeks. The first insecticide intervention resulted in a non-significant decrease in the relative abundance of Ae. aegypti. On the other hand, the second insecticide intervention significantly reduced the Ae. aegypti relative abundance (P < 0.002). Our results demonstrated that the combined insecticide interventions on two consecutive weeks significantly reduced the relative abundance of Ae. aegypti. This result indicated that the larvicide was successfully propelled reaching cryptical and difficult to reach aquatic habitats. However, even though the number of mosquitoes was greatly reduced, it was still greatly above the 10-mosquito threshold by trap night used by the Miami-Dade Mosquito Control Division to deploy an inspector to survey the area. Considering the lack of new and effective mosquito control tools, efficient and mobile insecticide propellers such as Buffalo Turbine can be of great help to manage mosquito populations in urban areas.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Monica Ramirez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Gabriel Cardenas
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
28
|
Staunton KM, Crawford JE, Liu J, Townsend M, Han Y, Desnoyer M, Howell P, Xiang W, Burkot TR, Snoad N, Ritchie SA. A Low-Powered and Highly Selective Trap for Male Aedes (Diptera: Culicidae) Surveillance: The Male Aedes Sound Trap. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:408-415. [PMID: 32740655 PMCID: PMC7801748 DOI: 10.1093/jme/tjaa151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 05/05/2023]
Abstract
As Aedes aegypti (Linnaeus, Diptera: Culicidae) expands its global distribution and vectors a range of debilitating arboviruses there is an increased need for enhanced mosquito surveillance. Consequently, we developed a Male Aedes Sound Trap (MAST) that requires minimal power and is highly species-specific. Two different versions of the MAST were developed, one that uses synthetic pyrethroid to kill captured mosquitoes (MAST Spray) and another which has an internal divider to create a killing chamber in which a sticky panel can be placed to capture mosquitoes (MAST Sticky). We compared weekly capture rates of male Ae. aegypti and bycatch from the two MAST versions to those from BG-Sentinel (BGS) traps and Sound-producing BG-Gravid Aedes Traps (SGATs) throughout Cairns, northern Australia. Weekly mean male Ae. aegypti catches did not significantly differ between trap types. However, the rate of positive weekly detections of male Ae. aegypti was lower for the MAST Sticky than the other three trap types. The MASTs sampled significantly fewer mosquitoes other than male Ae. aegypti, than either the BGS trap or the SGAT. Also, the MASTs and SGATs all caught significantly less non-Culicidae bycatch than the BGS traps. Consequently, we have developed a versatile male Ae. aegypti trap which is potentially of great benefit to Ae. aegypti surveillance programs.
Collapse
Affiliation(s)
- Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
- Corresponding author, e-mail:
| | | | - Jianyi Liu
- Verily Life Sciences, South San Francisco, CA
| | - Michael Townsend
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Yu Han
- College of Science & Engineering, James Cook University, Smithfield, QLD, Australia
| | | | - Paul Howell
- Verily Life Sciences, South San Francisco, CA
| | - Wei Xiang
- College of Science & Engineering, James Cook University, Smithfield, QLD, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| | - Nigel Snoad
- Verily Life Sciences, South San Francisco, CA
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, Australia
| |
Collapse
|
29
|
Semifield Evaluation of Improved Passive Outdoor Host Seeking Device (POHD) for Outdoor Control of Anopheles arabiensis Mosquitoes. ScientificWorldJournal 2020; 2020:8938309. [PMID: 32547328 PMCID: PMC7271259 DOI: 10.1155/2020/8938309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/07/2020] [Accepted: 04/13/2020] [Indexed: 12/03/2022] Open
Abstract
Despite the considerable progress made so far, the effectiveness and mass application of odour-baited outdoor mosquito control devices in pipelines is limited by several factors. These include the design and size of the devices, optimal placement of attractive blends, and nature of materials into which the blends are impregnated. The primary aim of this study was to manipulate these factors to improve the attractiveness of our recently developed passive outdoor host seeking device (POHD) to outdoor biting Anopheles arabiensis. Specifically, the study aimed to determine optimal placement of odour blends and killing bioactives in POHD for maximum attraction and killing of An. arabiensis and to assess the effects of blend types, formulation, and residual activity on attractiveness of the POHD to An. arabiensis. The POHDs baited with attractive blends, carbon dioxide (CO2), and bendiocarb-treated electrostatic netting were placed either towards the top or bottom openings, and other modifications were exposed to An. arabiensis under the semifield system at Ifakara Health Institute (IHI). Each night, a total of 100 starved female, 3–7-day-old, semifield reared An. arabiensis mosquitoes were released, collected the next morning (alive or dead), counted, and recorded. Live mosquitoes were maintained in the semifield insectary and monitored for 24 hours mortality. Each treatment combination of the POHD was tested in three replicates. Overall, the results indicated that the proportion of mosquitoes attracted to and killed in the POHD varied with position of attractants and killing agent (bendiocarb). The POHD with bottom placed attractants and bendiocarb attracted and killed higher proportion of mosquitoes compared to the POHD with top placed attractants and bendiocarb. The highest mortalities were observed when the POHD was baited with a combination of attractive blends and CO2. Moreover, the residual activity of attractive blends applied inside POHD varied with type and formulation of attractive blend. The POHD packed with Mbita and Ifakara blend in microencapsulated pellets (granules) attracted higher proportion of mosquitoes than that baited with soaked nylon-strip formulation of either blends. Interestingly, POHD baited with Mbita blend in microencapsulated pellets (granules) formulation attracted and killed higher proportion of mosquitoes (>90%) than that baited with Ifakara blend even 9 months after application. Conclusively, the POHD remained effective for a relatively longer period of time when baited with bottom placed synthetic blends and CO2 combination, thus warranting further trials under real life situations.
Collapse
|
30
|
Goodwin A, Glancey M, Ford T, Scavo L, Brey J, Heier C, Durr NJ, Acharya S. Development of a low-cost imaging system for remote mosquito surveillance. BIOMEDICAL OPTICS EXPRESS 2020; 11:2560-2569. [PMID: 32499943 PMCID: PMC7249828 DOI: 10.1364/boe.382391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 05/07/2023]
Abstract
Targeted vector control strategies aiming to prevent mosquito borne disease are severely limited by the logistical burden of vector surveillance, the monitoring of an area to understand mosquito species composition, abundance and spatial distribution. We describe development of an imaging system within a mosquito trap to remotely identify caught mosquitoes, including selection of the image resolution requirement, a design to meet that specification, and evaluation of the system. The necessary trap image resolution was determined to be 16 lp/mm, or 31.25um. An optics system meeting these specifications was implemented in a BG-GAT mosquito trap. Its ability to provide images suitable for accurate specimen identification was evaluated by providing entomologists with images of individual specimens, taken either with a microscope or within the trap and asking them to provide a species identification, then comparing these results. No difference in identification accuracy between the microscope and the trap images was found; however, due to limitations of human species classification from a single image, the system is only able to provide accurate genus-level mosquito classification. Further integration of this system with machine learning computer vision algorithms has the potential to provide near-real time mosquito surveillance data at the species level.
Collapse
|
31
|
Wilke ABB, Carvajal A, Vasquez C, Petrie WD, Beier JC. Urban farms in Miami-Dade county, Florida have favorable environments for vector mosquitoes. PLoS One 2020; 15:e0230825. [PMID: 32251419 PMCID: PMC7135078 DOI: 10.1371/journal.pone.0230825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
The creation of urban farms in complex urban built environments may create suitable local conditions for vector mosquitoes. Urban farms have been implicated in the proliferation of mosquitoes in Africa, but there is a dearth in the knowledge of their role in the proliferation of mosquitoes elsewhere. In this study, we surveyed two urban farms in Miami-Dade County, Florida. Our results show that urban farms provide favorable conditions for populations of vector mosquito species by providing a wide range of essential resources such as larval habitats, suitable outdoor resting sites, sugar-feeding centers, and available hosts for blood-feeding. A total of 2,185 specimens comprising 12 species of mosquitoes were collected over 7 weeks. The results varied greatly according to the urban farm. At the Wynwood urban farm, 1,016 specimens were collected but were distributed only between 3 species; while the total number of specimens collected at the Golden Glades urban farm was 1,168 specimens comprising 12 species. The presence of vector mosquitoes in urban farms may represent a new challenge for the development of effective strategies to control populations of vector mosquito species in urban areas.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
32
|
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Diaz Y, Belledent T, Gibson L, Petrie WD, Fuller DO, Beier JC. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS One 2020; 15:e0230748. [PMID: 32208462 PMCID: PMC7092980 DOI: 10.1371/journal.pone.0230748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Definable habitats at the neighborhood level provide a wide range of favorable habitats with optimal conditions and environmental resources for mosquito survival. Problematic habitats for controlling mosquitoes in urban environments such as tire shops, bromeliad patches, and construction sites must be taken into consideration in the development of effective mosquito management and control in urban areas. Cemeteries are often located in highly urbanized areas serving as a haven for populations of vector mosquito species due to the availability of natural resources present in most cemeteries. Even though Miami-Dade County, Florida was the most affected area in the United States during the Zika virus outbreak in 2016 and is currently under a mosquito-borne illness alert after 14 confirmed locally transmitted dengue cases, the role of cemeteries in the proliferation of vector mosquitoes is unknown. Therefore, our objective was to use a cross-sectional experimental design to survey twelve cemeteries across Miami-Dade County to assess if vector mosquitoes in Miami can be found in these areas. Our results are indicating that vector mosquitoes are able to successfully exploit the resources available in the cemeteries. Culex quinquefasciatus was the most abundant species but it was neither as frequent nor present in its immature form as Aedes aegypti and Aedes albopictus. This study revealed that vector mosquitoes, such as Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus are successfully exploiting the resources available in these areas being able to thrive and reach high numbers. Mosquito control strategies should consider both long-term strategies, based on changing human behavior to reduce the availability of aquatic habitats for vector mosquitoes; as well as short-term strategies such as drilling holes or adding larvicide to the flower vases. Simple practices would greatly help improve the effectiveness of mosquito management and control in these problematic urban habitats.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Augusto Carvajal
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Yadira Diaz
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Teresa Belledent
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Laurin Gibson
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Douglas O. Fuller
- Department of Geography and Regional Studies, University of Miami, Coral Gables, FL, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
33
|
Ortega-López LD, Pondeville E, Kohl A, León R, Betancourth MP, Almire F, Torres-Valencia S, Saldarriaga S, Mirzai N, Ferguson HM. The mosquito electrocuting trap as an exposure-free method for measuring human-biting rates by Aedes mosquito vectors. Parasit Vectors 2020; 13:31. [PMID: 31941536 PMCID: PMC6961254 DOI: 10.1186/s13071-020-3887-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence. Exposure to mosquito-borne diseases can be more directly estimated using human landing catches (HLC), although this method is not recommended for Aedes-borne arboviruses. We evaluated a new method previously tested with malaria vectors, the mosquito electrocuting trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes on people. Aims were to (i) compare the MET to the BG-sentinel (BGS) trap gold standard approach for sampling host-seeking Aedes vectors; and (ii) characterize the diel activity of Aedes vectors and their association with microclimatic conditions. METHODS The study was conducted over 12 days in Quinindé (Ecuador) in May 2017. Mosquito sampling stations were set up in the peridomestic area of four houses. On each day of sampling, each house was allocated either a MET or a BGS trap, which were rotated amongst the four houses daily in a Latin square design. Mosquito abundance and microclimatic conditions were recorded hourly at each sampling station between 7:00-19:00 h to assess variation between vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females were tested for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses. RESULTS A higher number of Ae. aegypti females were found in MET than in BGS collections, although no statistically significant differences in mean Ae. aegypti abundance between trapping methods were found. Both trapping methods indicated female Ae. aegypti had bimodal patterns of host-seeking, being highest during early morning and late afternoon hours. Mean Ae. aegypti daily abundance was negatively associated with daily temperature. No infection by ZIKV, DENV or CHIKV was detected in any Aedes mosquitoes caught by either trapping method. CONCLUSION We conclude the MET performs at least as well as the BGS standard and offers the additional advantage of direct measurement of per capita human-biting rates. If detection of arboviruses can be confirmed in MET-collected Aedes in future studies, this surveillance method could provide a valuable tool for surveillance and prediction on human arboviral exposure risk.
Collapse
Affiliation(s)
- Leonardo D. Ortega-López
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH UK
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH UK
| | - Renato León
- Laboratorio de Entomología Médica & Medicina Tropical (LEMMT), Universidad San Francisco de Quito, Quito, 170901 Ecuador
| | | | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH UK
| | - Sergio Torres-Valencia
- Laboratorio de Entomología Médica & Medicina Tropical (LEMMT), Universidad San Francisco de Quito, Quito, 170901 Ecuador
| | - Segundo Saldarriaga
- Laboratorio de Entomología Médica & Medicina Tropical (LEMMT), Universidad San Francisco de Quito, Quito, 170901 Ecuador
| | - Nosrat Mirzai
- Bioelectronics Unit, University of Glasgow, Glasgow, G12 8QQ UK
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
34
|
Omondi WP, Owino EA, Odongo D, Mwangangi JM, Torto B, Tchouassi DP. Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Acta Trop 2019; 200:105163. [PMID: 31494122 DOI: 10.1016/j.actatropica.2019.105163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023]
Abstract
Linalool oxide (LO) and hexanoic acid (HA) represent plant- and human-derived odorants, respectively, previously found as attractants for the dengue vector Aedes aegypti. Here, we investigated if a blend of both compounds can improve captures of this mosquito species in field trials in two dengue endemic sites, Kilifi and Busia Counties in Kenya. Ae. aegypti captures were significantly higher in Kilifi than Busia (χ21,142 = 170.63, P < 0.0001) and varied by treatments (χ25,137 = 151.19, P = 0.002). We found that CO2-baited BG Sentinel traps combined with a blend of both odorants decreased Ae. aegypti captures about 2- to 4-fold compared to captures with the individual compounds (LO or HA) used as positive controls. This was the case for all blends of LO and HA, irrespective of the doses tested. Our findings indicate that combining plant- and human-derived odors may elicit a masking effect in trapping Ae. aegypti. These results partly corroborate previous findings for malaria mosquitoes which showed that combining lures from both host sources either decreases or increases trap catches depending on the dose. Further investigations in the usefulness of combining plant and animal odorants in mosquito trapping are therefore necessary.
Collapse
Affiliation(s)
- Wyckliff P Omondi
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya; International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Eunice A Owino
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - David Odongo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Joseph M Mwangangi
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute (KEMRI), P.O. Box 42880-108, Kilifi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
35
|
Wilke ABB, Vasquez C, Petrie W, Beier JC. Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS One 2019; 14:e0217177. [PMID: 31107881 PMCID: PMC6527201 DOI: 10.1371/journal.pone.0217177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022] Open
Abstract
Human mobility in urban environments is a central part of urbanization and has determined the layout of how cities are projected, built and renovated. One of the most problematic issues of urbanization is how to properly dispose of used tires, considering the worldwide annual production of approximately 1.4 billion units every year. Despite the efforts to properly dispose of used tires, they still represent a major problem for public health, notably serving as potential breeding sites for vector mosquitoes. Miami-Dade County, Florida has been suffering from arbovirus outbreaks for decades, including dengue, West Nile and yellow fever viruses. The objective of this study was to survey tire shops inserted in the urban matrix across Miami-Dade County for the presence of vector mosquitoes. This study used a cross-sectional design to survey the production of vector mosquitoes at 12 tires shops. Mosquitoes were found in all but one of the tires shops surveyed. We collected a total of 1,110 mosquitoes comprising 528 adults and 582 immatures. Aedes aegypti and Culex quinquefasciatus were abundantly found in both their immature and adult forms, constituting 99.99% of the mosquito samples collected. Aedes aegypti was the most abundant species recorded displaying the highest values in the Shannon and Simpson indices. The findings of this study demonstrate that vector mosquitoes, primarily Ae. aegypti, are being produced in tires shops in Miami indicating these habitats are highly favorable breeding environments for the production of vector mosquitoes and emphasizing the need to address how the abundance and presence of mosquitoes may vary seasonally in these environments.
Collapse
Affiliation(s)
- André B. B. Wilke
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - William Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|