1
|
Senavirathne G, London J, Gardner A, Fishel R, Yoder KE. DNA strand breaks and gaps target retroviral intasome binding and integration. Nat Commun 2023; 14:7072. [PMID: 37923737 PMCID: PMC10624929 DOI: 10.1038/s41467-023-42641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - James London
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Anne Gardner
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
| | - Kristine E Yoder
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
HIV-1 Preintegration Complex Preferentially Integrates the Viral DNA into Nucleosomes Containing Trimethylated Histone 3-Lysine 36 Modification and Flanking Linker DNA. J Virol 2022; 96:e0101122. [PMID: 36094316 PMCID: PMC9517705 DOI: 10.1128/jvi.01011-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.
Collapse
|
3
|
Kotlar RM, Jones ND, Senavirathne G, Gardner AM, Messer RK, Tan YY, Rabe AJ, Fishel R, Yoder KE. Retroviral prototype foamy virus intasome binding to a nucleosome target does not determine integration efficiency. J Biol Chem 2021; 296:100550. [PMID: 33744295 PMCID: PMC8050864 DOI: 10.1016/j.jbc.2021.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.
Collapse
Affiliation(s)
- Randi M Kotlar
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nathan D Jones
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gayan Senavirathne
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anne M Gardner
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ryan K Messer
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yow Yong Tan
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anthony J Rabe
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Richard Fishel
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kristine E Yoder
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
| |
Collapse
|
4
|
Wilson MD, Renault L, Maskell DP, Ghoneim M, Pye VE, Nans A, Rueda DS, Cherepanov P, Costa A. Retroviral integration into nucleosomes through DNA looping and sliding along the histone octamer. Nat Commun 2019; 10:4189. [PMID: 31519882 PMCID: PMC6744463 DOI: 10.1038/s41467-019-12007-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023] Open
Abstract
Retroviral integrase can efficiently utilise nucleosomes for insertion of the reverse-transcribed viral DNA. In face of the structural constraints imposed by the nucleosomal structure, integrase gains access to the scissile phosphodiester bonds by lifting DNA off the histone octamer at the site of integration. To clarify the mechanism of DNA looping by integrase, we determined a 3.9 Å resolution structure of the prototype foamy virus intasome engaged with a nucleosome core particle. The structural data along with complementary single-molecule Förster resonance energy transfer measurements reveal twisting and sliding of the nucleosomal DNA arm proximal to the integration site. Sliding the nucleosomal DNA by approximately two base pairs along the histone octamer accommodates the necessary DNA lifting from the histone H2A-H2B subunits to allow engagement with the intasome. Thus, retroviral integration into nucleosomes involves the looping-and-sliding mechanism for nucleosomal DNA repositioning, bearing unexpected similarities to chromatin remodelers. Retroviral integrases catalyze the insertion of viral DNA into the host cell DNA and can use nucleosomes as substrates for integration. Here the authors present the 3.9 Å cryo-EM structure of prototype foamy virus integrase after strand transfer into nucleosomal DNA, which together with single-molecule FRET measurements provides evidence for a DNA looping and sliding mechanism of integrases.
Collapse
Affiliation(s)
- Marcus D Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.,NeCEN, University of Leiden, 2333CC, Leiden, Netherlands
| | - Daniel P Maskell
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Faculty of Biological Sciences, Leeds, LS2 9JT, UK
| | - Mohamed Ghoneim
- Single Molecule Imaging Group, MRC London Institute for Medical Science, London, W12 0NN, UK.,Molecular Virology, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Valerie E Pye
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - David S Rueda
- Single Molecule Imaging Group, MRC London Institute for Medical Science, London, W12 0NN, UK. .,Molecular Virology, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Peter Cherepanov
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK. .,Department of Medicine, Imperial College London, St-Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
5
|
Structural Insights on Retroviral DNA Integration: Learning from Foamy Viruses. Viruses 2019; 11:v11090770. [PMID: 31443391 PMCID: PMC6784120 DOI: 10.3390/v11090770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Foamy viruses (FV) are retroviruses belonging to the Spumaretrovirinae subfamily. They are non-pathogenic viruses endemic in several mammalian hosts like non-human primates, felines, bovines, and equines. Retroviral DNA integration is a mandatory step and constitutes a prime target for antiretroviral therapy. This activity, conserved among retroviruses and long terminal repeat (LTR) retrotransposons, involves a viral nucleoprotein complex called intasome. In the last decade, a plethora of structural insights on retroviral DNA integration arose from the study of FV. Here, we review the biochemistry and the structural features of the FV integration apparatus and will also discuss the mechanism of action of strand transfer inhibitors.
Collapse
|