1
|
Ikonomova SP, Yan B, Sun Z, Lyon RB, Zatopek KM, Marino JP, Kelman Z. Engineering GID4 for use as an N-terminal proline binder via directed evolution. Biotechnol Bioeng 2025; 122:179-188. [PMID: 39450770 DOI: 10.1002/bit.28868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Nucleic acid sequencing technologies have gone through extraordinary advancements in the past several decades, significantly increasing throughput while reducing cost. To create similar advancement in proteomics, numerous approaches are being investigated to advance protein sequencing. One of the promising approaches uses N-terminal amino acid binders (NAABs), also referred to as recognizers, that selectively can identify amino acids at the N-terminus of a peptide. However, there are only a few engineered NAABs currently available that bind to specific amino acids and meet the requirements of a biotechnology reagent. Therefore, additional NAABs need to be identified and engineered to enable confident identification and, ultimately, de novo protein sequencing. To fill this gap, a human protein GID4 was engineered to create a NAAB for N-terminal proline (Nt-Pro). While native GID4 binds Nt-Pro, its binding is weak (µmol/L) and greatly influenced by the identity of residues following the Nt-Pro. Through directed evolution, yeast-surface display, and fluorescence-activated cell sorting, we identified sequence variants of GID4 with increased binding response to Nt-Pro. Moreover, variants with an A252V mutation showed a reduced influence from residues in the second and third positions of the target peptide when binding to Nt-Pro. The workflow outlined here is shown to be a viable strategy for engineering NAABs, even when starting from native Nt-binding proteins whose binding is strongly impacted by the identity of residues following Nt-amino acid.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | - Bo Yan
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Zhiyi Sun
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Rachel B Lyon
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | | | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards and Technology (NIST) and the University of Maryland (UMD), Rockville, Maryland, USA
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland, USA
| |
Collapse
|
2
|
Filius M, van Wee R, de Lannoy C, Westerlaken I, Li Z, Kim SH, de Agrela Pinto C, Wu Y, Boons GJ, Pabst M, de Ridder D, Joo C. Full-length single-molecule protein fingerprinting. NATURE NANOTECHNOLOGY 2024; 19:652-659. [PMID: 38351230 DOI: 10.1038/s41565-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/22/2023] [Indexed: 03/21/2024]
Abstract
Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.
Collapse
Affiliation(s)
- Mike Filius
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Carlos de Lannoy
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zeshi Li
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sung Hyun Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Santermans S, Hellings G, Heyns M, Van Roy W, Martens K. Unraveling the impact of nano-scaling on silicon field-effect transistors for the detection of single-molecules. NANOSCALE 2023; 15:2354-2368. [PMID: 36644797 DOI: 10.1039/d2nr05267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrolyte-gated silicon field-effect transistors (FETs) capable of detecting single molecules could enable high-throughput molecular sensing chips to advance, for example, genomics or proteomics. For solid-gated silicon FETs it is well-known that nano-scaled devices become sensitive to single elementary charges near the silicon-oxide interface. However, in electrolyte-gated FETs, electrolyte screening strongly reduces sensitivity to charges near the gate oxide. The question arises whether nano-scaling electrolyte-gated FETs can entail a sufficiently large signal-to-noise ratio (SNR) for the detection of single molecules. We enhanced a technology computer-aided design tool with electrolyte screening models to calculate the impact of the FET geometry on the single-molecule signal and FET noise. Our continuum FET model shows that a sufficiently large single-molecule SNR is only obtained when nano-scaling all FET channel dimensions. Moreover, we show that the expected scaling trend of the single-molecule SNR breaks down and no longer results in improvements for geometries approaching the decananometer size. This is the characteristic size of the FET channel region modulated by a typical molecule. For gate lengths below 50 nm, the overlap of the modulated region with the highly conductive junctions leads to saturation of the SNR. For cross-sections below 10-30 nm, SNR degrades due to the overlap of the modulated region with the convex FET corners where a larger local gate capacitance reduces charge sensitivity. In our study, assuming a commercial solid-state FET noise amplitude, we find that a suspended nanowire FET architecture with 35 nm length and 5 × 10 nm2 cross-section results in the highest SNR of about 10 for a 15-base DNA oligo in a 15 mM electrolyte. In contrast with typical silicon nanowire FET sensors which possess micron-scale gate lengths, we find it to be key that all channel dimensions are scaled down to the decananometer range.
Collapse
Affiliation(s)
- Sybren Santermans
- imec, Kapeldreef 75, 3001 Leuven, Belgium.
- Department of Materials Engineering, University of Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | | | - Marc Heyns
- imec, Kapeldreef 75, 3001 Leuven, Belgium.
- Department of Materials Engineering, University of Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | | | | |
Collapse
|
4
|
Callahan N, Siegall WB, Bergonzo C, Marino JP, Kelman Z. Contributions from ClpS surface residues in modulating N-terminal peptide binding and their implications for NAAB development. Protein Eng Des Sel 2023; 36:gzad007. [PMID: 37498171 DOI: 10.1093/protein/gzad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Numerous technologies are currently in development for use in next-generation protein sequencing platforms. A notable published approach employs fluorescently-tagged binding proteins to identity the N-terminus of immobilized peptides, in-between rounds of digestion. This approach makes use of N-terminal amino acid binder (NAAB) proteins, which would identify amino acids by chemical and shape complementarity. One source of NAABs is the ClpS protein family, which serve to recruit proteins to bacterial proteosomes based on the identity of the N-terminal amino acid. In this study, a Thermosynechococcus vestitus (also known as Thermosynechococcus elongatus) ClpS2 protein was used as the starting point for direct evolution of an NAAB with affinity and specificity for N-terminal leucine. Enriched variants were analyzed and shown to improve the interaction between the ClpS surface and the peptide chain, without increasing promiscuity. Interestingly, interactions were found that were unanticipated which favor different charged residues located at position 5 from the N-terminus of a target peptide.
Collapse
Affiliation(s)
- Nicholas Callahan
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - William B Siegall
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Biomolecular Labeling Laboratory, IBBR, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
5
|
He H, Wu C, Saqib M, Hao R. Single-molecule fluorescence methods for protein biomarker analysis. Anal Bioanal Chem 2023:10.1007/s00216-022-04502-9. [PMID: 36609860 DOI: 10.1007/s00216-022-04502-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuhong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.,Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. .,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Sampath G. A binary/digital approach to amino acid identification and its application to peptide sequencing and protein identification. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:94. [PMID: 36445647 DOI: 10.1140/epje/s10189-022-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
A binary/digital method is proposed in theory for the identification of single amino acids (AAs) in the bulk or with a few molecules from a single binary measurement. Combined with Edman degradation (or other cleaving method), it can be used to sequence a peptide or identify the parent protein from a partial sequence. The approach is centered on the superspecificity property of transfer RNAs (tRNAs). Markedly different from conventional and recent single molecule (SM) sequencing methods based on analog measurements, it changes the analytical question 'Which AA is it?' to the much simpler one 'Is there an AA in the detection space?'. Each of 20 terminal residues cleaved from 20 copies of a peptide enters a different cavity with a unique tRNA; tRNA charging (or binding with AA) occurs only in the cavity with the cognate AA. The bound AA or the AA separated from the tRNA is detected with a single binary measurement; its identity is known from the position of the single high bit in the resulting 20-bit output. Alternatively, a 20-stage pipeline can be used with sparse samples. Detection of the bound AA can be done optically by tagging the AAs with a fluorescent dye, or of the freed AA electrically with a nanopore. Necessary conditions for accurate AA identification are satisfied in principle; related computations and simulation results are presented. A modified version that can be used for de novo sequencing in parallel of large numbers of peptides immobilized on a glass slide with the tRNAs carrying a fluorescent tag is also proposed. Both methods can be used for protein identification from partial sequences containing 2 or 3 AA types by using only the corresponding tRNAs. Experiments may be performed to validate them, followed by translation into practice with existing technology; potential implementation issues are discussed. Binary/digital amino acid identification for peptide sequencing.
Collapse
|
7
|
Xie T, Brady A, Velarde C, Vaccarello DN, Callahan NW, Marino JP, Orski SV. Selective C-Terminal Conjugation of Protease-Derived Native Peptides for Proteomic Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9119-9128. [PMID: 35856835 DOI: 10.1021/acs.langmuir.2c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bottom-up proteomic experiments often require selective conjugation or labeling of the N- and/or C-termini of peptides resulting from proteolytic digestion. For example, techniques based on surface fluorescence imaging are emerging as a promising route to high-throughput protein sequencing but require the generation of peptide surface arrays immobilized through single C-terminal point attachment while leaving the N-terminus free. While several robust approaches are available for selective N-terminal conjugation, it has proven to be much more challenging to implement methods for selective labeling or conjugation of the C-termini that can discriminate between the C-terminal carboxyl group and other carboxyl groups on aspartate and glutamate residues. Further, many approaches based on conjugation through amide bond formation require protection of the N-terminus to avoid unwanted cross-linking reactions. To overcome these challenges, herein, we describe a new strategy for single-point selective immobilization of peptides generated by protease digestion via the C-terminus. The method involves immobilization of peptides via lysine amino acids which are found naturally at the C-terminal end of cleaved peptides from digestions of certain serine endoproteinases, like LysC. This lysine and the N-terminus, the sole two primary amines in the peptide fragments, are chemically reacted with a custom phenyl isothiocyanate (EPITC) that contains an alkyne handle. Subsequent exposure of the double-modified peptides to acid selectively cleaves the N-terminal amino acid, while the modified C-terminus lysine remains unchanged. The alkyne-modified peptides with free N-termini can then be immobilized on an azide surface through standard click chemistry. Using this general approach, surface functionalization is demonstrated using a combination of X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Tian Xie
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
- Georgetown University, Washington, District of Columbia, 20057, United States
| | - Alexandria Brady
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Cecilia Velarde
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - David N Vaccarello
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Nicholas W Callahan
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - John P Marino
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Sara V Orski
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
8
|
Abstract
Despite tremendous gains over the past decade, methods for characterizing proteins have generally lagged behind those for nucleic acids, which are characterized by extremely high sensitivity, dynamic range, and throughput. However, the ability to directly characterize proteins at nucleic acid levels would address critical biological challenges such as more sensitive medical diagnostics, deeper protein quantification, large-scale measurement, and discovery of alternate protein isoforms and modifications and would open new paths to single-cell proteomics. In response to this need, there has been a push to radically improve protein sequencing technologies by taking inspiration from high-throughput nucleic acid sequencing, with a particular focus on developing practical methods for single-molecule protein sequencing (SMPS). SMPS technologies fall generally into three categories: sequencing by degradation (e.g., mass spectrometry or fluorosequencing), sequencing by transit (e.g., nanopores or quantum tunneling), and sequencing by affinity (as in DNA hybridization-based approaches). We describe these diverse approaches, which range from those that are already experimentally well-supported to the merely speculative, in this nascent field striving to reformulate proteomics.
Collapse
Affiliation(s)
- Brendan M Floyd
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, USA; ,
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, USA; ,
| |
Collapse
|
9
|
Alfaro JA, Bohländer P, Dai M, Filius M, Howard CJ, van Kooten XF, Ohayon S, Pomorski A, Schmid S, Aksimentiev A, Anslyn EV, Bedran G, Cao C, Chinappi M, Coyaud E, Dekker C, Dittmar G, Drachman N, Eelkema R, Goodlett D, Hentz S, Kalathiya U, Kelleher NL, Kelly RT, Kelman Z, Kim SH, Kuster B, Rodriguez-Larrea D, Lindsay S, Maglia G, Marcotte EM, Marino JP, Masselon C, Mayer M, Samaras P, Sarthak K, Sepiashvili L, Stein D, Wanunu M, Wilhelm M, Yin P, Meller A, Joo C. The emerging landscape of single-molecule protein sequencing technologies. Nat Methods 2021; 18:604-617. [PMID: 34099939 PMCID: PMC8223677 DOI: 10.1038/s41592-021-01143-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/02/2021] [Indexed: 02/04/2023]
Abstract
Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.
Collapse
Affiliation(s)
- Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland.
| | - Peggy Bohländer
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Mingjie Dai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Cecil J Howard
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Xander F van Kooten
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shilo Ohayon
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adam Pomorski
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Chan Cao
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Rome, Italy
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France
| | - Cees Dekker
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Rienk Eelkema
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - David Goodlett
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada
| | | | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Sung Hyun Kim
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - David Rodriguez-Larrea
- Department of Biochemistry and Molecular Biology, Biofisika Institute (CSIC, UPV/EHU), Leioa, Spain
| | - Stuart Lindsay
- Biodesign Institute, School of Molecular Sciences, Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Kumar Sarthak
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lusia Sepiashvili
- University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Derek Stein
- Department of Physics, Brown University, Providence, RI, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Amit Meller
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Abstract
![]()
While mass spectrometry
still dominates proteomics research, alternative
and potentially disruptive, next-generation technologies are receiving
increased investment and attention. Most of these technologies aim
at the sequencing of single peptide or protein molecules, typically
labeling or otherwise distinguishing a subset of the proteinogenic
amino acids. This note considers some theoretical aspects of these
future technologies from a bottom-up proteomics viewpoint, including
the ability to uniquely identify human proteins as a function of which
and how many amino acids can be read, enzymatic efficiency, and the
maximum read length. This is done through simulations under ideal
and non-ideal conditions to set benchmarks for what may be achievable
with future single-molecule sequencing technology. The simulations
reveal, among other observations, that the best choice of reading N amino acids performs similarly to the average choice of N+1 amino acids, and that the discrimination power of the
amino acids scales with their frequency in the proteome. The simulations
are agnostic with respect to the next-generation proteomics platform,
and the results and conclusions should therefore be applicable to
any single-molecule partial peptide sequencing technology.
Collapse
Affiliation(s)
- Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
11
|
Miclotte G, Martens K, Fostier J. Computational assessment of the feasibility of protonation-based protein sequencing. PLoS One 2020; 15:e0238625. [PMID: 32915813 PMCID: PMC7485799 DOI: 10.1371/journal.pone.0238625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Recent advances in DNA sequencing methods revolutionized biology by providing highly accurate reads, with high throughput or high read length. These read data are being used in many biological and medical applications. Modern DNA sequencing methods have no equivalent in protein sequencing, severely limiting the widespread application of protein data. Recently, several optical protein sequencing methods have been proposed that rely on the fluorescent labeling of amino acids. Here, we introduce the reprotonation-deprotonation protein sequencing method. Unlike other methods, this proposed technique relies on the measurement of an electrical signal and requires no fluorescent labeling. In reprotonation-deprotonation protein sequencing, the terminal amino acid is identified through its unique protonation signal, and by repeatedly cleaving the terminal amino acids one-by-one, each amino acid in the peptide is measured. By means of simulations, we show that, given a reference database of known proteins, reprotonation-deprotonation sequencing has the potential to correctly identify proteins in a sample. Our simulations provide target values for the signal-to-noise ratios that sensor devices need to attain in order to detect reprotonation-deprotonation events, as well as suitable pH values and required measurement times per amino acid. For instance, an SNR of 10 is required for a 61.71% proteome recovery rate with 100 ms measurement time per amino acid.
Collapse
Affiliation(s)
| | | | - Jan Fostier
- IDLab, Ghent University-Imec, Ghent, Belgium
| |
Collapse
|
12
|
Leveraging nature's biomolecular designs in next-generation protein sequencing reagent development. Appl Microbiol Biotechnol 2020; 104:7261-7271. [PMID: 32617618 DOI: 10.1007/s00253-020-10745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023]
Abstract
Next-generation approaches for protein sequencing are now emerging that could have the potential to revolutionize the field in proteomics. One such sequencing method involves fluorescence-based imaging of immobilized peptides in which the N-terminal amino acid of a polypeptide is readout sequentially by a series of fluorescently labeled biomolecules. When selectively bound to a specific N-terminal amino acid, the NAAB (N-terminal amino acid binder) affinity reagent identifies the amino acid through its associated fluorescence tag. A key technical challenge in implementing this fluoro-sequencing approach is the need to develop NAAB affinity reagents with the high affinity and selectivity for specific N-terminal amino acids required for this biotechnology application. One approach to develop such a NAAB affinity reagent is to leverage naturally occurring biomolecules that bind amino acids and/or peptides. Here, we describe several candidate biomolecules that could be considered for this purpose and discuss the potential for developability of each. Key points • Next-generation sequencing methods are emerging that could revolutionize proteomics. • Sequential readout of N-terminal amino acids by fluorescent-tagged affinity reagents. • Native peptide/amino acid binders can be engineered into affinity reagents. • Protein size and structure contribute to feasibility of reagent developability.
Collapse
|
13
|
Callahan N, Tullman J, Kelman Z, Marino J. Strategies for Development of a Next-Generation Protein Sequencing Platform. Trends Biochem Sci 2019; 45:76-89. [PMID: 31676211 DOI: 10.1016/j.tibs.2019.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Proteomic analysis can be a critical bottleneck in cellular characterization. The current paradigm relies primarily on mass spectrometry of peptides and affinity reagents (i.e., antibodies), both of which require a priori knowledge of the sample. An unbiased protein sequencing method, with a dynamic range that covers the full range of protein concentrations in proteomes, would revolutionize the field of proteomics, allowing a more facile characterization of novel gene products and subcellular complexes. To this end, several new platforms based on single-molecule protein-sequencing approaches have been proposed. This review summarizes four of these approaches, highlighting advantages, limitations, and challenges for each method towards advancing as a core technology for next-generation protein sequencing.
Collapse
Affiliation(s)
- Nicholas Callahan
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA.
| | - Jennifer Tullman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA; Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|