1
|
Wu Z, Chen WJ, Lan YZ, Fang ZX, Hou YY, Yu XN, Wu HT, Liu J. Tumor Heterogeneity of STEAP4 in Malignant Progression of Oral Squamous Cell Carcinoma. J Cancer 2024; 15:6754-6767. [PMID: 39668818 PMCID: PMC11632996 DOI: 10.7150/jca.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 12/14/2024] Open
Abstract
Background: Recent research suggests that STEAP4, a metalloreductase in vivo, plays a crucial role in various types of tumorigeneses, especially in gastrointestinal cancers. However, few oncogenes have been reported in oral squamous cell carcinoma (OSCC). Therefore, this study aimed to explore the potential role of STEAP4 in OSCC. Methods: The expression level of STEAP4 in OSCC tissues and adjacent normal tissues, was detected using immunohistochemistry. Publicly available online tools were utilized to analyze the expression, prognostic significance, and related enriched pathways of STEAP4 in head and neck squamous cell carcinoma (HNSCC) and OSCC. The relationship between STEAP4 expression and clinicopathological parameters in OSCC patients was validated using the χ2 test and Fisher's exact probability test. Results: STEAP4 exhibited low expression in both HNSCC and OSCC. Whereas the prognosis for HNSCC patients was favorable, OSCC patients had poor outcomes. Genetic variability analysis revealed no alterations in STEAP4 in OSCC, whereas gene amplification was observed in HNSCC, suggesting tumor heterogeneity in STEAP4 among these cancer types. Conclusion: STEAP4, as a risk factor associated with poor patient prognosis, shows tumor heterogeneity in OSCC patients, that is potentially related to genetic mutations or differences in histological distribution of oral mucosa. These findings indicate that STEAP4 could serve as an independent predictor for assessing the prognosis of OSCC patients.
Collapse
Affiliation(s)
- Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xin-Ning Yu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
2
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
de Andrade JA, Agudelo Garcia PA, Mora AL. Unveiling Biological Age: A New Frontier in Predicting Outcomes in Chronic Lung Disease. Am J Respir Crit Care Med 2024; 210:541-543. [PMID: 39078175 PMCID: PMC11389574 DOI: 10.1164/rccm.202407-1290ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Joao A de Andrade
- Department of Medicine Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville, Tennessee
| | - Paula A Agudelo Garcia
- Department of Internal Medicine Division of Pulmonary, Critical Care, and Sleep Medicine The Ohio State University Columbus, Ohio
| | - Ana L Mora
- Department of Internal Medicine Division of Pulmonary, Critical Care, and Sleep Medicine The Ohio State University Columbus, Ohio
| |
Collapse
|
4
|
Luo YC, Lv YL, He RX, Shi XX, Jiang T. Kallikrein-related peptidase 10 predicts prognosis and mediates tumor immunomodulation in colorectal cancer. Biochem Biophys Res Commun 2023; 689:149217. [PMID: 37972446 DOI: 10.1016/j.bbrc.2023.149217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The incidence and mortality rates of colorectal cancer (CRC) have significantly increased in recent years. It has been shown that early diagnosis of CRC improves the five-year survival of patients compared to late diagnosis, as patients with stage I disease have a five-year survival rate as high as 90 %. Through bioinformatics analysis, we identified Kallikrein 10 (KLK10), a member of the Kallikrein family, as a reliable predictor of CRC progression, particularly in patients with early-stage CRC. Furthermore, single-cell analysis revealed that KLK10 was highly expressed in tumor and partial immune cells. Analysis of the biological functions of KLK10 using the Kyoto encyclopedia of genes and genomes and gene ontology indicated that KLK10 plays a role in the proliferation and differentiation of cancer cells, along with the maintenance of tumor function and immune regulation, explicitly by T cells and macrophages. EdU cell proliferation staining, plate clone formation assay, and cell scratch assay demonstrated that KLK10 inhibition by siRNA affected the proliferation and migration of CRC cells. Cell cycle detection by flow cytometry demonstrated that KLK10 inhibition led to cell cycle arrest in the G1 phase. In addition, the proportion of M1 and M2 macrophages in 45 tumor specimens was analyzed by immunohistochemistry, the proportion of CD4+ T cells and CD8+ T cells in plasma was identified by flow cytometry, and their correlation with KLK10 was analyzed. The effects of KLK10 on T cells and macrophages were verified in independent cell experiments. The results revealed that KLK10 also activates CD4+ T cells, mediating M2-type macrophage polarization.
Collapse
Affiliation(s)
- Yi-Chao Luo
- Hunan Hospital of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yuan-Lin Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruo-Xu He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao-Xia Shi
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
6
|
Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer 2022; 22:223-238. [PMID: 35102281 DOI: 10.1038/s41568-021-00436-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
7
|
Lee KY, Chau CH, Price DK, Figg WD. Drugging the undruggable: activity-based protein profiling offers opportunities for targeting the KLK activome. Cancer Biol Ther 2022; 23:136-138. [PMID: 35129066 PMCID: PMC8820805 DOI: 10.1080/15384047.2022.2033059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Kristi Y. Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K. Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
LncRNA RP11-465B22.8 triggers esophageal cancer progression by targeting miR-765/KLK4 axis. Cell Death Discov 2021; 7:262. [PMID: 34561425 PMCID: PMC8463694 DOI: 10.1038/s41420-021-00631-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023] Open
Abstract
LncRNAs play an important role in tumorigenesis and progression; however, the function and mechanisms of lncRNAs in esophageal cancer (EC) remain largely unclear. In this study, we screened the differentially expressed lncRNAs in EC by using RNA-seq and one of the most upregulated lncRNAs, lncRNA RP11-465B22.8, was further characterized. LncRNA RP11-465B22.8 was upregulated in EC tissues and high lncRNA RP11-465B22.8 expression was associated with poor survival of EC patients. Ectopic expression of lncRNA RP11-465B22.8 enhanced the proliferation, migration, and invasion of EC cells, whereas knockdown of lncRNA RP11-465B22.8 led to the opposite effects. Mechanistically, lncRNA RP11-465B22.8 sponged miR-765 to increase the expression of KLK4. Moreover, LncRNA RP11-465B22.8 could be delivered from EC cells to macrophages via exosomes and subsequently induced M2 macrophage-induced cell migration and invasion. Our findings revealed a novel lncRNA RP11-465B22.8/miR-765/KLK4 pathway in EC and indicated that lncRNA RP11-465B22.8 might be a potential target for EC therapy.
Collapse
|
9
|
Qing Y, Li Q, Zhao LY, Shi P, Shan JL, Zhang W. LncRNA-PANDAR regulates the progression of thyroid carcinoma by targeting miR-637/KLK4. J Cancer 2021; 12:5879-5887. [PMID: 34476001 PMCID: PMC8408101 DOI: 10.7150/jca.55181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Thyroid gland carcinoma (TC) originates from follicular or parafollicular thyroid cells and is one of the most common endocrine organ malignancies. To explore the molecular mechanism by which long-chain non-coding RNAs regulate the growth and metastasis of thyroid gland carcinoma, in this study we focused on long non-coding RNAs (lncRNAs) that have been reported to be involved in tumorigenesis. We identified Promoter Region of CDKN 1A antisense DNA damage-activated RNA (PANDAR), which was positively correlated with thyroid gland carcinoma risk. PANDAR could promote thyroid gland carcinoma cell proliferation and metastasis. PANDAR negatively correlated with miR-637, and miR-637 overexpression suppressed thyroid gland carcinoma progression, which could be reversed by PANDAR. MiR-637 could target Kallikrein-related peptidases 4 (KLK4) to inhibit its expression, which was high in thyroid gland carcinoma. KLK4 inhibited cell progression in thyroid gland carcinoma cells. Knockdown of PANDAR expression inhibited cancer progression in nude mice. Overall, PANDAR can suppress miR-637 and induce KLK4 to regulate invasion and migration in thyroid gland carcinoma. Additionally, we identified miR-637 as a target of PANDAR in thyroid gland carcinoma, and PANDAR can be used as a novel therapeutic target for the treatment of thyroid gland carcinoma.
Collapse
Affiliation(s)
- Yi Qing
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu 610081, People's Republic of China
| | - Qian Li
- Department of Oncology, Daping hospital, Army Medical University, Chongqing, 400042, China
| | - Ling-Yan Zhao
- Department of respiratory and critical care medicine, Guangyuan Central Hospital, Guangyuan City, Sichuan Province, 628000, China
| | - Ping Shi
- Department of respiratory and critical care medicine, Guangyuan Central Hospital, Guangyuan City, Sichuan Province, 628000, China
| | - Jin-Lu Shan
- Department of Oncology, Daping hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Zhang
- Department of medical oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
10
|
Li M, Srp J, Mareš M, Wlodawer A, Gustchina A. Structural studies of complexes of kallikrein 4 with wild-type and mutated forms of the Kunitz-type inhibitor BbKI. Acta Crystallogr D Struct Biol 2021; 77:1084-1098. [PMID: 34342281 PMCID: PMC8329858 DOI: 10.1107/s2059798321006483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
Structures of BbKI, a recombinant Kunitz-type serine protease inhibitor from Bauhinia bauhinioides, complexed with human kallikrein 4 (KLK4) were determined at medium-to-high resolution in four crystal forms (space groups P3121, P6522, P21 and P61). Although the fold of the protein was virtually identical in all of the crystals, some significant differences were observed in the conformation of Arg64 of BbKI, the residue that occupies the S1 pocket in KLK4. Whereas this residue exhibited two orientations in the highest resolution structure (P3121), making either a canonical trypsin-like interaction with Asp189 of KLK4 or an alternate interaction, only a single alternate orientation was observed in the other three structures. A neighboring disulfide, Cys191-Cys220, was partially or fully broken in all KLK4 structures. Four variants of BbKI in which Arg64 was replaced by Met, Phe, Ala and Asp were expressed and crystallized, and their structures were determined in complex with KLK4. Structures of the Phe and Met variants complexed with bovine trypsin and of the Phe variant complexed with α-chymotrypsin were also determined. Although the inhibitory potency of these variant forms of BbKI was lowered by up to four orders of magnitude, only small changes were seen in the vicinity of the mutated residues. Therefore, a totality of subtle differences in KLK4-BbKI interactions within the fully extended interface in the structures of these variants might be responsible for the observed effect. Screening of the BbKI variants against a panel of serine proteases revealed an altered pattern of inhibitory specificity, which was shifted towards that of chymotrypsin-like proteases for the hydrophobic Phe and Met P1 substitutions. This work reports the first structures of plant Kunitz inhibitors with S1-family serine proteases other than trypsin, as well as new insights into the specificity of inhibition of medically relevant kallikreins.
Collapse
Affiliation(s)
- Mi Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jaroslav Srp
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
11
|
Riedel M, Bronger H, Magdolen V, Dreyer T. The prognostic and diagnostic potential of kallikrein-related peptidases in ovarian cancer. Expert Rev Mol Diagn 2021; 21:535-545. [PMID: 33947310 DOI: 10.1080/14737159.2021.1924680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Ovarian cancer is one of the deadliest malignancies among women worldwide. The lack of early diagnostic markers fuels an unfavorable prognosis as most patients are at an advanced stage when the disease is diagnosed for the first time. The role of the kallikrein-related peptidase (KLK) family in ovarian cancer progression and prognosis has been thoroughly investigated in various studies. Most of these peptidases are upregulated in ovarian cancer tissue compared to normal ovarian tissue and their expression is linked to overall and progression-free survival (OS/PFS). In this review, we address the clinical relevance of KLKs in ovarian cancer and their diagnostic potential.Areas covered: This review covers the expression and regulation of KLKs in ovarian cancer with focus on the prognostic and diagnostic potential, especially in liquid biopsies.Expert opinion: In ovarian cancer, several kallikrein-related peptidases are markedly expressed in a tissue-specific manner. Tumor-derived protease secretion results in elevated levels in serum and ascites. KLKs may thus serve as potential biomarkers alone or in combination with other serum tumor markers, such as Cancer Antigen 125 (CA125), for early detection and assessment of the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Maximilian Riedel
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Holger Bronger
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Tobias Dreyer
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| |
Collapse
|
12
|
Gong W, Zhu C, Liu Y, Muckenhuber A, Bronger H, Scorilas A, Kiechle M, Dorn J, Magdolen V, Dreyer T. Elevated levels of both microRNA 378 (miR-378) and kallikrein-related peptidase 4 (KLK4) mRNA are associated with an unfavorable prognosis in triple-negative breast cancer. Am J Transl Res 2021; 13:1594-1606. [PMID: 33841682 PMCID: PMC8014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Triple-negative breast cancer (TNBC) patients have the worst outcome among all breast cancer subtypes. In oral squamous carcinoma cells, miR-378 was reported to target the mRNA of kallikrein-related peptidase 4 (KLK4), resulting in inhibition of cell proliferation, migration and invasion, induction of apoptosis, and reduction of tumor growth in vivo. Similarly, a miR-378/KLK4 axis has been proposed in prostate cancer. Here, we analyzed the correlation between miR-378 and KLK4 mRNA expression and determined the prognostic impact of both factors in TNBC. miR-378 and KLK4 mRNA expression levels were determined by quantitative PCR in tumor tissue of TNBC patients (n=103) and correlated with clinical parameters and patients' survival. There was no significant correlation between miR-378 and KLK4 mRNA expression. In univariate Cox regression analysis, elevated miR-378 expression was significantly associated with shortened disease-free survival (DFS, P=0.047) and overall survival (OS, P=0.031), high KLK4 mRNA levels were linked to a worse DFS (P=0.033). Combination of KLK4 mRNA and miR-378 (KLK4+miR-378, low/low versus high and/or high) allowed even better discrimination between favorable and unfavorable prognosis (DFS, P=0.008; OS, P=0.025). In multivariable analysis, miR-378 and KLK4+miR-378 expression remained independent predictive factors for DFS (P=0.014, P=0.010, respectively) and OS (P=0.016, P=0.049, respectively), while KLK4 mRNA only showed a trend towards significance for DFS (P=0.061). Our findings suggest that in TNBC there is no significant impact of miR-378 on KLK4 expression. Both factors, miR-378 and, to a lesser extent, KLK4 mRNA represent unfavorable prognostic markers in TNBC patients.
Collapse
Affiliation(s)
- Weiwei Gong
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
- Department of Hematology-Oncology, Guangzhou Women and Children’s Medical CenterGuangzhou, People’s Republic of China
| | - Caixia Zhu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, People’s Republic of China
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical SciencesGuangzhou, People’s Republic of China
| | | | - Holger Bronger
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of AthensGreece
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of MunichGermany
| |
Collapse
|
13
|
Gong W, Liu Y, Diamandis EP, Kiechle M, Bronger H, Dorn J, Dreyer T, Magdolen V. Prognostic value of kallikrein-related peptidase 7 (KLK7) mRNA expression in advanced high-grade serous ovarian cancer. J Ovarian Res 2020; 13:125. [PMID: 33087135 PMCID: PMC7579813 DOI: 10.1186/s13048-020-00725-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian cancer. A growing body of evidence suggests tumor-supporting roles of several members of the kallikrein-related peptidase (KLK) family, including KLK5 and KLK7, in this cancer subtype. In normal physiology, KLK5 and KLK7 are the major proteases involved in skin desquamation. Moreover, in several cancer types KLK5 and KLK7 co-expression has been observed. Recently, we have shown that elevated KLK5 mRNA levels are associated with an unfavorable prognosis in HGSOC. Therefore, the aim of this study was to investigate the clinical significance of KLK7 mRNA expression and to explore its relation to KLK5 levels in HGSOC. METHODS mRNA expression levels of KLK7 were quantified by qPCR in a well-characterized patient cohort afflicted with advanced high-grade serous ovarian cancer (FIGO III/IV, n = 139). Previously determined KLK5 mRNA as well as KLK5 and KLK7 antigen concentrations were used to evaluate the relationship between the expression patterns of both factors on the mRNA as well as protein level in tumor tissue of HGSOC patients. RESULTS There were strong, significant positive correlations between KLK5 and KLK7 both at the mRNA and the protein level, suggesting coordinate expression of these proteases in HGSOC. In univariate analyses, elevated KLK7 levels as well as the combination of KLK5 + KLK7 (high and/or high versus low/low) were significantly associated with worse progression-free survival (PFS). High mRNA expression levels of KLK7 and the combination of KLK5 and KLK7 showed a trend towards significance for overall survival (OS). In multivariate analyses, KLK7 mRNA expression represented an unfavorable, statistically significant independent predictor for PFS and OS. CONCLUSIONS The findings imply that both increased KLK5 and KLK7 mRNA expression levels represent unfavorable prognostic biomarkers in advanced high-grade serous ovarian cancer, whereby multivariate analyses indicate that KLK7 mRNA exhibits a stronger predictive value as compared to KLK5 mRNA and the combination of KLK5 and KLK7.
Collapse
Affiliation(s)
- Weiwei Gong
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany.,Department of Hematology-Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | - Yueyang Liu
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany.,Department of Gynecology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marion Kiechle
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany
| | - Holger Bronger
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany.
| |
Collapse
|
14
|
Cheng H, Wang N, Tian J, Li Y, Ren L, Shi Z. Circular RNA Circ_0025033 Promotes the Evolvement of Ovarian Cancer Through the Regulation of miR-330-5p/KLK4 Axis. Cancer Manag Res 2020; 12:2753-2765. [PMID: 32425594 PMCID: PMC7186775 DOI: 10.2147/cmar.s241372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are significant molecular targets in various types of human cancers. The functional mechanism of circRNA_0025033 (circ_0025033) in ovarian cancer (OC) was discussed in the current report. Methods The quantitative real-time polymerase chain reaction (qRT-PCR) was used for determining the circ_0025033 and microRNA-330-5p (miR-330-5p) levels. Cell Counting Kit-8 (CCK-8) and transwell assays were separately exploited to analyze cell viability and migration/invasion. Cell apoptosis was assessed using flow cytometry. The protein levels of epithelial–mesenchymal transition (EMT)-related makers and kallikrein-related peptidase 4 (KLK4) were measured by Western blotting. The target combination was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down assays. And the effect of circ_0025033 on OC in vivo was explored via xenograft tumor assay. Results Circ_0025033 was overexpressed in OC tissues and cells. Circ_0025033 knockdown inhibited OC cell viability, migration, invasion and EMT while expedited apoptosis. MiR-330-5p was a target of circ_0025033 and circ_0025033 regulated OC cellular behaviors by sequestering miR-330-5p. Moreover, miR-330-5p targeted KLK4 and circ_0025033 affected the KLK4 expression by sponging miR-330-5p. And miR-330-5p functioned as a tumor inhibitor in OC via targeting KLK4. In vivo, circ_0025033 promoted OC growth by the miR-330-5p/KLK4 axis. Conclusion This study demonstrated that circ_0025033 contributed to the progression of OC via the miR-330-5p/KLK4 axis and might be a candidate target in the identification and treatment of OC.
Collapse
Affiliation(s)
- Hailing Cheng
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Ning Wang
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Jun Tian
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Yanyun Li
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Lu Ren
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Zhenyu Shi
- Henan Medical School, Henan University, Kaifeng, Henan, People's Republic of China
| |
Collapse
|
15
|
He X, Meng F, Qin L, Liu Z, Zhu X, Yu Z, Zheng Y. KLK11 suppresses cellular proliferation via inhibition of Wnt/β-catenin signaling pathway in esophageal squamous cell carcinoma. Am J Cancer Res 2019; 9:2264-2277. [PMID: 31720087 PMCID: PMC6834484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023] Open
Abstract
Studies have demonstrated that kallikrein-associated peptidase 11 (KLK11) is dysregulated in various cancers. However, the potential roles of KLK11 in esophageal squamous cell carcinoma (ESCC) are still unknown. In our study, we found that the expression of KLK11 in advanced ESCC was significantly down regulated than that in the adjacent tissues, and patients with higher KLK11 expression had markedly increased overall survival rates compared with those with lower KLK11 expression. In addition, up regulation of KLK11 decreased the proliferation capacity of TE-1 and EC18 cells, and down regulation of KLK11 increased the proliferation capacity. To explore the possible mechanism of KLK11 in regulating the proliferation of ESCC, the expression of the related factors in Wnt/β-catenin pathway and cell cycle-mediated factors, such as GSK-3β/p-GSK-3β, β-catenin, Ki67, p-Rb/Rb, CDK6, CDK4 and Cyclin D1, were determined. Furthermore, KLK11 was found to be negatively correlated with the expression of β-catenin in the nucleus, as showed by decreased expression of cyclin D1 and Ki67 through deactivation of the Wnt/β-catenin signaling pathway. XAV-939, a Wnt/β-catenin inhibitor, partially decreased the effects of KLK11 deficiency on ESCC cell proliferation. Finally, we validated that KLK11 inhibited ESCC proliferation in vivo. Our results showed that the inhibitory effects of KLK11 on the proliferation of TE-1 and EC18 cells might be associated with inhibition of Wnt/β-catenin signaling pathway. KLK11 played a key role in inhibiting ESCC carcinogenesis and progression and became a potential biomarker for poor prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Xin He
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi Province, China
| | - Fan Meng
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi Province, China
| | - Lingyu Qin
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Zhile Liu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Xiongjie Zhu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Zhongjian Yu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Yanfang Zheng
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| |
Collapse
|