1
|
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int J Mol Sci 2024; 25:9299. [PMID: 39273247 PMCID: PMC11395652 DOI: 10.3390/ijms25179299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaculture, the world's fastest-growing food production sector, is critical for addressing food security concerns because of its potential to deliver high-quality, nutrient-rich supplies by 2050. This review assesses the effectiveness of CRISPR/Cas9 genome editing technology in enhancing desirable traits in fish species, including growth rates, muscle quality, disease resistance, pigmentation, and more. It also focuses on the potential effectiveness of the technology in allowing precise and targeted modifications of fish DNA to improve desirable characteristics. Many studies have reported successful applications of CRISPR/Cas9, such as knocking out reproductive genes to control reproduction and sex determination, enhancing feed conversion efficiency, and reducing off-target effects. Additionally, this technology has contributed to environmental sustainability by reducing nitrogen-rich waste and improving the nutritional composition of fish. However, the acceptance of CRISPR/Cas9 modified fish by the public and consumers is hindered by concerns regarding public perception, potential ecological impacts, and regulatory frameworks. To gain public approval and consumer confidence, clear communication about the editing process, as well as data on the safety and environmental considerations of genetically modified fish, are essential. This review paper discusses these challenges, provides possible solutions, and recommends future research on the integration of CRISPR/Cas9 into sustainable aquaculture practices, focusing on the responsible management of genetically modified fish to enable the creation of growth and disease-resistant strains. In conclusion, this review highlights the transformative potential of CRISPR/Cas9 technology in improving fish traits, while also considering the challenges and ethical considerations associated with sustainable and responsible practices in aquaculture.
Collapse
Affiliation(s)
- Minli Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | - Yan Shui
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Nwachi OF, Irabor AE, Umehai MC, Omonigho T, Sanubi JO. Pattern of color inheritance in African catfish (Clarias gariepinus): an expression of a Mendelian law. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:881-889. [PMID: 38085448 DOI: 10.1007/s10695-023-01282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/26/2023] [Indexed: 06/29/2024]
Abstract
In this study the pattern of color of inheritance based on Mendel's laws on the Clarias gariepinus strain was evaluated, to ascertain the different traits of albino, normally pigmented, and a combination of both traits that could be passed across from the parent stocks to the progenies. Since albinism is caused by a series of genetic abnormalities resulting in the reduction of melanin production, partial diallel cross between normally pigmented and albino fish was carried out using two females (albino and normal pigmented brood fish) weighing 2.5 kg and 3 kg, respectively; they were used in crossing two males (albino and normal pigmented brood fish) that weighed 1.5 kg and 1 kg, respectively. They were paired with normal pigmented (♂Np × ♀Np) and albino C. gariepinus (♂Ae × ♀Ae) fish to produce a pure strain of normally pigmented and albino strain, respectively. To produce the hybrids, they were paired (♂Np × ♀Ae) and (♂Ae × ♀Np), respectively. The outcomes of this study showed that crossbreeding between normally pigmented females and albino males produced all normally pigmented F1 generation, while some quantity of albino (36.67%) at crossing male albino to normally pigmented females were produced. However, the pure strains breed true (100%). Each hybrid exhibits heterosis after 56 days of rearing compared to the normal strain that was crossed, although the normally pigmented fish gives a better SGR. Hence, there is a need to investigate if sex is linked with albinism.
Collapse
Affiliation(s)
- Oster Francis Nwachi
- Department of Fisheries and Aquaculture, Faculty of Agriculture, Delta State University, Abraka, Nigeria
| | - Arnold Ebuka Irabor
- Department of Fisheries and Aquaculture Faculty of Agriculture, Dennis Osadebay University, Anwai Asaba, Nigeria.
| | - Michael Chukwuemeka Umehai
- Department of Fisheries and Aquaculture, Faculty of Agriculture, Delta State University, Abraka, Nigeria
| | - Truth Omonigho
- Department of Fisheries and Aquaculture, Faculty of Agriculture, Delta State University, Abraka, Nigeria
| | - Jovita Oghenenyerhovwo Sanubi
- Department of Animal Science and Production, Faculty of Agriculture, Dennis Osadebay University, Anwai, Asaba, Nigeria
| |
Collapse
|
3
|
Liu J, Lu Q, Wei Y, Zhang X, Lin L, Li Q. Insights into the mechanism of color formation of the freshwater prawn (Macrobrachium rosenbergii) revealed by de novo assembly transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101237. [PMID: 38729032 DOI: 10.1016/j.cbd.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Body color is an important visual indicator of crustacean quality and plays a major role in consumer acceptability, perceived quality, and the market price of crustaceans. The freshwater prawn (Macrobrachium rosenbergii) has two distinct phenotypic variations, characterized by dark blue and light yellow body colors. However, the underlying mechanisms regulating the body color of M. rosenbergii remain unclear. In this study, the composition of shell color parameters and pigment cells of raw and cooked dark blue and light yellow M. rosenbergii was investigated and the mechanisms associated with body color were elucidated by transcriptome analysis. The results showed significant differences in the raw shells of the dark blue and light yellow M. rosenbergii (L: 26.20 ± 0.53 vs. 29.25 ± 0.45; a: -0.88 ± 0.19 vs. 0.35 ± 0.18; b: 1.73 ± 0.20 vs. 3.46 ± 0.37; dE: 70.33 ± 0.53 vs. 67.34 ± 0.45, respectively, p = 0.000) as well as the cooked shells (L: 58.14 ± 0.81 vs. 55.78 ± 0.55; a: 19.30 ± 0.56 vs. 16.42 ± 0.40; b: 23.60 ± 0.66 vs. 20.30 ± 0.40, respectively, p < 0.05). Transcriptome differential gene analysis obtained 39.02 Gb of raw data and 158,026 unigenes. Comprehensive searches of the SwissProt, Nr, KEGG, Pfam, and KOG databases resulted in successful annotations of 23,902 (33 %), 40,436 (25.59 %), 32,015 (20.26 %), 26,139 (16.54 %), and 22,155 (14.02 %) proteins, respectively. By KEGG pathway analysis, numerous differentially expressed genes were related to pigmentation-related pathways (MAPK signaling pathway, Wnt signaling pathway, melanin production, tyrosine metabolism, and cell-cell communication process). Candidate DEGs that may be involved in body color included apolipoprotein D, crustacyanin, cytochrome P450, and tyrosinase, as verified by quantitative real-time PCR. The results of this study provide useful references to further elucidate the molecular mechanisms of color formation of M. rosenbergii and other crustaceans.
Collapse
Affiliation(s)
- Junhui Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Qifeng Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Yong Wei
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Xingqian Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China.
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China.
| |
Collapse
|
4
|
Wu S, Huang J, Li Y, Zhao L. Involvement of miR-495 in the skin pigmentation of rainbow trout (Oncorhynchus mykiss) through the regulation of mc1r. Int J Biol Macromol 2024; 254:127638. [PMID: 37879576 DOI: 10.1016/j.ijbiomac.2023.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in skin pigmentation in animals. Rainbow trout (Oncorhynchus mykiss) is a key economic fish species worldwide, and skin color directly affects its economic value. However, the functions of miRNAs in rainbow trout skin pigmentation remain largely unknown. Herein, we overexpressed and silenced miR-495 in vitro and in vivo to investigate its functions. The analysis of spatial and temporal expression patterns suggested that miR-495 is a potential regulator during the process of skin pigmentation. In vitro, mc1r was validated as a direct target for miR-495 by dual-luciferase reporter assay, and overexpression of miR-495 significantly inhibited mc1r expression; in contrast, mc1r and its downstream gene mitf levels were markedly upregulated by decreased miR-495. In vivo, overexpressed miR-495 by injecting agomiR-495 led to a substantial decrease in the expression of mc1r and mitf in dorsal skin and liver, while the opposite results were obtained after miR-495 silencing by antagomiR-495. These findings suggested that miR-495 can target mc1r to regulate rainbow trout skin pigmentation, which provide a potential basis for using miRNAs as target drugs to treat pigmentation disorders and melanoma.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Zhang C, Ren Z, Gong Z. Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:281-290. [PMID: 36917276 DOI: 10.1007/s10126-023-10204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
Albinism is the most common color variation described in fish and is a fascinating trait of some ornamental fish species. Albino mutants can be generated by knocking out core genes affecting melanin synthesis like slc45a2 in several fish species. However, genetic mutation remains challenging for species with unknown genome information. In this study, we generated albino mutants in two selected ornamental fish species, royal farlowella (Sturisoma panamense), and redhead cichlid (Vieja melanura). For this purpose, we carried out phylogenetic analyses of fish slc45a2 sequences and identified a highly conserved region among different fish species. A pair of degenerate primers spanning this region was designed and used to amplify a conserved slc45a2 fragment of 340 bp from the two fish species. Based on the amplified sequences, a target site in the 6th exon was used for designing guide RNA and this targeted site was first verified by the CRISPR/Cas9 system in the zebrafish (Danio rerio) model for the effectiveness. Then, specific guide RNAs were designed for the two ornamental fish species and tested. Most of the injected larvae completely lost black pigment over the whole body and eyes. DNA sequencing confirmed a high degree of mutation at the targeted site. Overall, we described a fast and efficient method to generate albino phenotype in fish species by targeting the conserved 6th exon of slc45a2 gene for genome editing via CRISPR/Cas9 and this approach could be a new genetic tool to generate desirable albino ornamental fish.
Collapse
Affiliation(s)
- Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, 250014, Jinan, China.
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore.
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Sciences Drive 4, 117558, Singapore, Singapore.
| |
Collapse
|
6
|
Wu S, Zhao L, Huang J, Li Y, Liu Z, Zhang D. miR-330 targeting BCO2 is involved in carotenoid metabolism to regulate skin pigmentation in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2023; 24:124. [PMID: 36927381 PMCID: PMC10021964 DOI: 10.1186/s12864-023-09173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a critical role in regulating skin pigmentation. As a key economic trait, skin color directly affects the market value of rainbow trout (Oncorhynchus mykiss), however, the regulatory mechanism of most miRNAs in fish skin color is still unclear. RESULTS In this study, the full-length cDNA sequence of β-carotene oxygenase 2 (BCO2, a key regulator of carotenoid metabolism) from the rainbow trout was obtained using rapid-amplification of cDNA ends (RACE) technology, and qRT-PCR was used to investigate the differential expression of miR-330 and BCO2 in 14 developmental stages and 13 tissues between wild-type rainbow trout (WTrt) and yellow mutant rainbow trout (YMrt). Additionally, the function of miR-330 was verified by overexpression and silencing in vitro and in vivo. The results showed that the complete cDNA sequence of BCO2 was 2057 bp with a 1707 bp ORF, encoding a 568 amino acid protein having a molecular weight of 64.07 kD. Sequence alignment revealed that higher conservation of BCO2 protein amongst fishes than amongst other vertebrates, which was further confirmed by phylogenetic analysis. The analysis of spatial and temporal expression patterns suggested that BCO2 and miR-330 were abundantly expressed from fertilized-stage to multi-cell as well as in the dorsal and ventral skin of WTrt and YMrt, and their expression patterns were opposite in most of the same periods and tissues. In vitro, luciferase reporter assay confirmed that BCO2 was a direct target of miR-330, and transfection of miR-330 mimics into rainbow trout liver cells resulted in a decrease in the expression of BCO2; conversely, miR-330 inhibitor had the opposite effect to the miR-330 mimics. In vivo, miR-330 agomir significantly decreased BCO2 expression in dorsal skin, tail fin, and liver. Furthermore, overexpression of miR-330 could suppress cell proliferation and induce apoptosis. CONCLUSION Our results showed that miR-330 is involved in the regulation of skin pigmentation in rainbow trout by targeting BCO2 and shows its promise as a potential molecular target to assist the selection of rainbow trout with better skin color patterns.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dongqiang Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
7
|
Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y. The genetic basis and potential molecular mechanism of yellow-albino northern snakehead ( Channa argus). Open Biol 2023; 13:220235. [PMID: 36789536 PMCID: PMC9929503 DOI: 10.1098/rsob.220235] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.
Collapse
Affiliation(s)
- Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jianlong Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwei Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zexin Tao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
8
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. MiR-382 Functions on the Regulation of Melanogenesis via Targeting dct in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:776-787. [PMID: 35895228 DOI: 10.1007/s10126-022-10143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that are involved in a diverse collection of biological processes as important post-transcriptional regulators. However, little is known about the molecular regulatory mechanism of miRNAs in fish skin pigmentation. In this study, we first confirmed that dopachrome tautomerase (dct), a key gene of melanogenesis, is a target of miR-382 in rainbow trout (Oncorhynchus mykiss) using luciferase reporter assay. The analysis of different developmental stages and tissue expression patterns between wild-type and yellow mutant rainbow trout suggested that miR-382 is a potential regulator during the process of skin pigmentation. In vitro, miR-382 mimics in rainbow trout primary liver cells significantly downregulated dct expression and resulted in decreased expression of key melanogenic genes including tyrosine-related protein 1 (tyrp1) and premelanosome protein (pmel), whereas the expression level of dct was markedly increased after transfected with miR-382 inhibitor. In vivo, overexpression of miR-382 by injection of miR-382 agomir significantly depressed the expression of dct in dorsal skin, tail fin, and liver and then reduced the expression levels of tyrp1 and pmel. Furthermore, transfection of miR-382 mimics inhibited cell proliferation and induced apoptosis. Taken together, our results identified a functional role of miR-382 in rainbow trout skin pigmentation through targeting dct, which facilitate understanding the regulatory mechanism of rainbow trout skin color at the post-transcriptional level and provide a theoretical basis for molecular breeding with skin color as the target trait.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
9
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. Integrated Analysis of lncRNA and circRNA Mediated ceRNA Regulatory Networks in Skin Reveals Innate Immunity Differences Between Wild-Type and Yellow Mutant Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:802731. [PMID: 35655786 PMCID: PMC9152293 DOI: 10.3389/fimmu.2022.802731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Fish skin is a vital immune organ that forms the first protective barrier preventing entry of external pathogens. Rainbow trout is an important aquaculture fish species that is farmed worldwide. However, our knowledge of innate immunity differences between wild-type (WR_S) and yellow mutant rainbow trout (YR_S) remains limited. In this study, we performed whole transcriptome analysis of skin from WR_S and YR_S cultured in a natural flowing water pond. A total of 2448 mRNAs, 1630 lncRNAs, 22 circRNAs and 50 miRNAs were found to be differentially expressed (DE). Among these DEmRNAs, numerous key immune-related genes, including ifih1, dhx58, trim25, atp6v1e1, tap1, tap2, cd209, hsp90a.1, nlrp3, nlrc3, and several other genes associated with metabolism (gstp1, nampt, naprt and cd38) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEmRNAs revealed that many were significantly enriched in innate immune-related GO terms and pathways, including NAD+ADP-ribosyltransferase activity, complement binding, immune response and response to bacterium GO terms, and RIG-I-like receptor signaling, NOD-like receptor signaling and phagosome KEGG pathways. Furthermore, the immune-related competing endogenous RNA networks were constructed, from which we found that lncRNAs MSTRG.11484.2, MSTRG.32014.1 and MSTRG.29012.1 regulated at least three immune-related genes (ifih1, dhx58 and irf3) through PC-5p-43254_34, PC-3p-28352_70 and bta-miR-11987_L-1R-1_1ss8TA, and tap2 was regulated by two circRNAs (circRNA5279 and circRNA5277) by oni-mir-124a-2-p5_1ss13GA. The findings expand our understanding of the innate immune system of rainbow trout, and lay the foundation for further study of immune mechanisms and disease resistance breeding.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Wang C, Xu J, Kocher TD, Li M, Wang D. CRISPR knockouts of pmela and pmelb engineered a golden tilapia by regulating relative pigment cell abundance. J Hered 2022; 113:398-413. [PMID: 35385582 DOI: 10.1093/jhered/esac018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Premelanosome protein (pmel) is a key gene for melanogenesis. Mutations in this gene are responsible for white plumage in chicken, but its role in pigmentation of fish remains to be demonstrated. In this study we found that most fishes have two pmel genes arising from the teleost-specific whole genome duplication. Both pmela and pmelb were expressed at high levels in the eyes and skin of Nile tilapia. We mutated both genes in tilapia using CRISPR/Cas9. Homozygous mutation of pmela resulted in yellowish body color with weak vertical bars and a hypo-pigmented retinal pigment epithelium (RPE) due to significantly reduced number and size of melanophores. In contrast, we observed an increased number and size of xanthophores in mutants compared to wild-type fish. Homozygous mutation of pmelb resulted in a similar, but milder phenotype than pmela-/- mutants. Double mutation of pmela and pmelb resulted in loss of additional melanophores compared to the pmela-/- mutants, and also an increase in the number and size of xanthophores, producing a golden body color. The RPE pigmentation of pmela-/-;pmelb-/- was similar to pmela-/- mutants, with much less pigmentation than pmelb-/- mutants and wild-type fish. Taken together, our results indicate that, while both pmel genes are important for the formation of body color in tilapia, pmela plays a more important role than pmelb. To our knowledge, this is the first report on mutation of pmelb or both pmela;pmelb in fish. Studies on these mutants suggest new strategies for breeding golden tilapia, and also provide a new model for studies of pmel function in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jia Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, USA
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Wu S, Huang J, Li Y, Zhao L, Liu Z. Analysis of yellow mutant rainbow trout transcriptomes at different developmental stages reveals dynamic regulation of skin pigmentation genes. Sci Rep 2022; 12:256. [PMID: 34997156 PMCID: PMC8742018 DOI: 10.1038/s41598-021-04255-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Yellow mutant rainbow trout (YR), an economically important aquaculture species, is popular among consumers due to its excellent meat quality and attractive appearance. Skin color is a key economic trait for YR, but little is known about the molecular mechanism of skin color development. In this study, YR skin transcriptomes were analyzed to explore temporal expression patterns of pigmentation-related genes in three different stages of skin color development. In total, 16,590, 16,682, and 5619 genes were differentially expressed between fish at 1 day post-hatching (YR1d) and YR45d, YR1d and YR90d, and YR45d and YR90d. Numerous differentially expressed genes (DEGs) associated with pigmentation were identified, and almost all of them involved in pteridine and carotenoid synthesis were significantly upregulated in YR45d and YR90d compared to YR1d, including GCH1, PTS, QDPR, CSFIR1, SLC2A11, SCARB1, DGAT2, PNPLA2, APOD, and BCO2. Interestingly, many DEGs enriched in melanin synthesis pathways were also significantly upregulated, including melanogenesis (MITF, MC1R, SLC45A2, OCA2, and GPR143), tyrosine metabolism (TYR, TYRP1, and DCT), and MAPK signaling (KITA) pathways. Using short time-series expression miner, we identified eight differential gene expression pattern profiles, and DEGs in profile 7 were associated with skin pigmentation. Protein–protein interaction network analysis showed that two modules were related to xanthophores and melanophores. In addition, 1,812,329 simple sequence repeats and 2,011,334 single-nucleotide polymorphisms were discovered. The results enhance our understanding of the molecular mechanism underlying skin pigmentation in YR, and could accelerate the molecular breeding of fish species with valuable skin color traits and will likely be highly informative for developing new therapeutic approaches to treat pigmentation disorders and melanoma.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
12
|
Integrative mRNA-miRNA interaction analysis reveals the molecular mechanism of skin color variation between wild-type and yellow mutant rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100914. [PMID: 34653947 DOI: 10.1016/j.cbd.2021.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economic fish in China. Skin color affects the economic value of trout. However, the molecular mechanism of the skin color variation between wild-type (WR) and yellow mutant rainbow trout (YR) is unclear. We sequenced mRNAs and miRNAs of dorsal skin to identify key color variation-associated mRNAs and miRNAs between WR and YR. Overall, 2060 out of 3625 differentially expressed genes were upregulated in YR, and 196 out of 275 differentially expressed miRNAs were downregulated in WR. We identified three key YR-upregulated genes related to the formation of xanthophores (GCH1, SLC2A11, and SOX10). Interestingly, several genes related to melanogenesis (TYR, TYRP1, TYRP2, MC1R, MITF, PMEL, SLC45A2, and OCA2) were downregulated in WR. Integrated analysis identified five miRNAs that target at least two skin color-related genes (miR-495-y, miR-543-y, miR-665-z, miR-433-y, and miR-382-x). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of target genes identified noncoding RNA metabolic process as the most significantly enriched GO term, and several metabolic pathways associated with skin color were enriched significantly, such as tyrosine metabolism, histidine metabolism, and vitamin B6 metabolism. Quantitative real-time PCR of selected mRNAs and miRNAs validated the reliability of the integrated analysis. This study provides in-depth insights into the molecular mechanism of skin color variation between WR and YR, which will accelerate the genetic selection and breeding of rainbow trout with consumer-favored traits.
Collapse
|
13
|
Butzge AJ, Yoshinaga TT, Acosta ODM, Fernandino JI, Sanches EA, Tabata YA, de Oliveira C, Takahashi NS, Hattori RS. Early warming stress on rainbow trout juveniles impairs male reproduction but contrastingly elicits intergenerational thermotolerance. Sci Rep 2021; 11:17053. [PMID: 34426625 PMCID: PMC8382822 DOI: 10.1038/s41598-021-96514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
The exposure of adult fish to warm or high temperatures is known to impair reproduction, yet the long-term reproductive impacts for treatments at early life are not well clarified. This study aimed to evaluate the effects of warm temperature (WT) during juvenile stage on gonad maturation, gamete quality, and offspring thermotolerance in rainbow trout. While the comparison of basic reproductive parameters in WT females did not reveal any kind of impairment, many WT males showed an atrophied, undeveloped gonad, or a smaller testis with lower milt volume; sperm quality parameters in WT males and deformity rates in the respective progeny were also highly affected. However, despite of such negative effects, many of the remaining progeny presented better rates of survival and growth when exposed to the same conditions as those of parental fish (WT), suggesting that thermal stress in parr stage males elicited intergenerational thermotolerance after a single generation. The present results support that prolonged warming stress during early life stages can adversely affect key reproductive aspects, but contrastingly increase offspring performance at upper thermal ranges. These findings have implications on the capacity of fish to adapt and to cope with global warming.
Collapse
Affiliation(s)
- Arno Juliano Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Omar David Moreno Acosta
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Eduardo Antônio Sanches
- Fishery Engineering Course and Aquaculture Centre (CAUNESP), São Paulo State University, Registro, 11900-000, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil
| | - Claudio de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Neuza Sumico Takahashi
- Centro de Pesquisa de Aquicultura, Sao Paulo Fisheries Institute (APTA/SAA), São Paulo, 05001-900, Brazil
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil.
| |
Collapse
|
14
|
Segev-Hadar A, Slosman T, Rozen A, Sherman A, Cnaani A, Biran J. Genome Editing Using the CRISPR-Cas9 System to Generate a Solid-Red Germline of Nile Tilapia ( Oreochromis niloticus). CRISPR J 2021; 4:583-594. [PMID: 34406049 DOI: 10.1089/crispr.2020.0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In recent years, there has been increasing demand for red tilapia, which are commercial strains of hybrids of different tilapiine species or red variants of highly inbred Nile tilapia. However, red tilapia phenotypes are genetically unstable and affected by environmental factors, resulting in nonuniform coloration with black or dark-red color blotches that reduce their market value. Solute carrier family 45 member 2 (SLC45A2) is a membrane transporter that mediates melanin biosynthesis and is evolutionarily conserved from fish to humans. In the present study, we describe the generation of a stable and heritable red tilapia phenotype by inducing loss-of-function mutations in the slc45a2 gene. For this purpose, we identified the slc45a2 gene in Nile tilapia and designed highly specific guide RNAs (gRNA) for its genomic sequence. Multiplex microinjection of slc45a2-specific ribonucleoproteins to Nile tilapia zygotes induced up to 97-99% albinism, including loss of melanin in the eye. Next-generation sequencing of the injected zygotes demonstrated that all injected fish carried mutant alleles with variable mutagenesis efficiencies. Sanger sequencing of the genomic target region in the slc45a2 gene from fin clips, sperm, and F1 offspring of a highly mutant male identified various genomic indels and germline transmission of the sperm-identified indels. Overall, this work demonstrates the generation of somatic and germline slc45a2 mutant alleles, which leads to complete albinism in Nile tilapia.
Collapse
Affiliation(s)
- Adi Segev-Hadar
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Tatiana Slosman
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Ada Rozen
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Amir Sherman
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel; and Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
15
|
Bertolesi GE, McFarlane S. Melanin-concentrating hormone like and somatolactin. A teleost-specific hypothalamic-hypophyseal axis system linking physiological and morphological pigmentation. Pigment Cell Melanoma Res 2020; 34:564-574. [PMID: 32898924 DOI: 10.1111/pcmr.12924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Plastic adaptation to match the skin colour to the surrounding is key to survival. Two biological responses in skin colour are associated with background adaptation. A fast "physiological response" that aggregates/disperses the pigment organelles of skin chromatophores, and a slow "morphological response" that alters the type and/or density of pigment cells in the skin. Both responses are linked by unknown mechanisms. In this review, we discuss the role in skin colour regulation of two molecules that form part of a hypothalamic-hypophyseal pathway unique to teleosts, melanin-concentrating hormone "like" (MCHL) (previously known as MCH), and somatolactin. MCHL neurons project to the neurohypophysis and to the pars intermedia pituitary, where they interact with somatolactin-expressing cells. With a white background MCHL is released into the circulation to induce rapid melanosome aggregation and skin lightening. Somatolactin is also a fish-specific peptide whose expression and secretion are altered in organisms adapted chronically to white/black backgrounds, and that regulates morphological pigmentation. We discuss the evidence for a model whereby in teleosts, MCHL and somatolactin provide the previously unknown link between physiological and morphological pigmentation.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|