1
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Noble C, Hooke A, Rajotia A, Morse D, Dragomir-Daescu D, Salisbury J, Young MD, Lerman A. Effect of mechanical fatigue on commercial bioprosthetic TAVR valve mechanical and microstructural properties. J Mech Behav Biomed Mater 2024; 154:106441. [PMID: 38518510 DOI: 10.1016/j.jmbbm.2024.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 03/24/2024]
Abstract
Valvular structural deterioration is of particular concern for transcatheter aortic valve replacements due to their suspected shorter longevity and increasing use in younger patient populations. In this work we investigated the mechanical and microstructural changes in commercial TAVR valves composed of both glutaraldehyde fixed bovine and porcine pericardium (GLBP and GLPP) following accelerated wear testing (AWT) as outlined in ISO 5840 standards. This provided greater physiological relevance to the loading compared to previous studies and by utilizing digital image correlation we were able to obtain strain contours for each leaflet pre and post fatigue and identify sites of fatigue damage. The areas of greatest change in mechanical strain for each leaflet were then further probed using biaxial tensile testing, confocal microscopy, and electron microscopy. It was observed that overall strain decreased in the GLPP valves following AWT of 200 million cycles while the GLBP valve showed an increase in overall strain. Biaxial tensile testing showed a statistically significant reduction in stress for GLPP while no significant changes were seen for GLBP. Both confocal and electron microscopy showed a disruption to the gross collagen organization and fibrillar structure, including fragmentation, for GLPP but only the former for GLBP. However, further test data is required to confirm these findings and to provide a better understanding of this fatigue pathway is required such that it can be incorporated into both valve design and selection processes to improve overall longevity for both GLPP and GLBP devices.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | - Arush Rajotia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Dragomir-Daescu
- Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Jeffery Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Suárez S, López-Campos JA, Fernández JR, Segade A. Nonlocal damage evaluation of a sigmoid-based damage model for fibrous biological soft tissues. Biomech Model Mechanobiol 2024; 23:655-674. [PMID: 38158483 DOI: 10.1007/s10237-023-01798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
The comprehension and modeling of the mechanical behavior of soft biological tissues are essential due to their clinical applications. This knowledge is essential for predicting tissue responses accurately and enhancing our ability to compute the behavior of biological structures and bio-prosthetic devices under specific loading conditions. The current research is centered on modeling the initiation and progression of soft tissues damage, which typically exhibit intricate anisotropic and nonlinear elastic characteristics. For this purpose, the following study presents a comparative analysis of the computational performance of two distinct damage modeling techniques. The first technique employs a well-established damage model, based on a piece-wise exponential damage function as proposed by Calvo et al. (Int J Numer Methods Eng 69:2036-2057, 2007. https://doi.org/10.1002/nme.1825 ). The second approach adopts a sigmoid function, as proposed by López-Campos et al. (Comput Methods Biomech Biomed Eng 23(6):213-223. https://doi.org/10.1080/10255842.2019.1710742 ). The aim of this study is to verify the validity of the López-Campos sigmoid-based damage model to be used in finite element simulation, the implementation of which is unknown. For this proposal, both models were implemented within a commercial Finite Element software package, and their responses to local and non-local damage algorithms were assessed in depth through two standard benchmark tests: a plate with a hole and a ball burst. The results of this study indicate that, for a wide range of cases, such as in-plane stresses, out-plane stresses, stress concentration and contact, all over large displacement conditions, the López-Campos damage model shows a good response to non-local algorithms achieving mesh independence and convergence in all these cases. The results obtained are in line with those obtained for the Calvo's damage model, showing, in addition, larger deformations under in-plane stress and stress concentration conditions and a lower number of iterations under out-plane stress and contact conditions. Consequently, the López-Campos' damage model emerges as a valuable and useful tool in the field of mechanical damage research in biological systems.
Collapse
Affiliation(s)
- Sofía Suárez
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain.
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain.
| | - Jose A López-Campos
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| | - Jose R Fernández
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
- Department of Applied Mathematics I, Industrial Engineering School, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Abraham Segade
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| |
Collapse
|
4
|
Tsolaki E, Corso P, Zboray R, Avaro J, Appel C, Liebi M, Bertazzo S, Heinisch PP, Carrel T, Obrist D, Herrmann IK. Multiscale multimodal characterization and simulation of structural alterations in failed bioprosthetic heart valves. Acta Biomater 2023; 169:138-154. [PMID: 37517619 DOI: 10.1016/j.actbio.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.
Collapse
Affiliation(s)
- Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Pascal Corso
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | - Jonathan Avaro
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | | | - Marianne Liebi
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland; Paul Scherrer Institute, PSI, Villigen 5232, Switzerland; Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, UK; London Centre for Nanotechnology, University College London, WC1E 6BT, UK
| | - Paul Philipp Heinisch
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität München, Germany
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Cardiac Surgery, University Hospital Zurich (USZ), Rämistrasse 101, Zürich 8091, Switzerland.
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland.
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
5
|
Raman J, Bhaskar J, Newcomb A. Leaflet Immobility and Hypo-Attenuated Leaflet Thrombosis (HALT)-Under-Recognised Complications of Bioprosthetic Valve Replacements. Heart Lung Circ 2022; 31:1049-1050. [PMID: 35870828 DOI: 10.1016/j.hlc.2022.06.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jai Raman
- University of Melbourne, Melbourne, Vic, Australia; St Vincent's Hospital, Melbourne, Vic, Australia; Austin Health, Melbourne, Vic, Australia.
| | - Jay Bhaskar
- St Vincent's Hospital, Melbourne, Vic, Australia; Austin Health, Melbourne, Vic, Australia
| | | |
Collapse
|
6
|
Noble C, Morse D, Lerman A, Young M. Evaluation of Pericardial Tissues from Assorted Species as a Tissue-Engineered Heart Valve Material. Med Biol Eng Comput 2022; 60:393-406. [PMID: 34984601 DOI: 10.1007/s11517-021-02498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
Decellularized pericardial tissue is a strong candidate for a TEHV material as ECM is present to guide cellular infiltration and fixed porcine and bovine pericardial tissue have existing use in bioprosthetic heart valves. In this work, we compare the mechanical and microstructural properties of decellularized-sterilized (DS) porcine, bovine, and bison pericardial tissues with respect to use as a TEHV. H&E staining was used to verify removal of cellular content post-decellularization and to evaluate collagen fiber structure. Additionally, uniaxial and biaxial tension testing were used to compare mechanical performance and, for the latter, acquire constitutive model parameters for subsequent finite element (FE) modeling. H&E staining revealed complete removal of cellular content and good collagen fiber structure. Tensile testing showed comparable mechanical strength between the three DS pericardial tissues and considerably stronger mechanical properties compared to native tissues. Bovine and bison DS pericardial tissues showed the strongest mechanical performance in the FE models with bison demonstrating the overall best mechanical characteristics. The increased thickness of bovine and bison tissues coupled with the strong mechanical behavior and ECM structure indicates that these materials will be resistant to damage until sufficient cellular infiltration has occurred such that damaged tissue can be repaired.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Whelan A, Williams E, Nolan DR, Murphy B, Gunning PS, O'Reilly D, Lally C. Bovine Pericardium of High Fibre Dispersion Has High Fatigue Life and Increased Collagen Content; Potentially an Untapped Source of Heart Valve Leaflet Tissue. Ann Biomed Eng 2020; 49:1022-1032. [PMID: 33063231 DOI: 10.1007/s10439-020-02644-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Bioprosthetic heart valves (BHVs) are implanted in aortic valve stenosis patients to replace the native, dysfunctional valve. Yet, the long-term performance of the glutaraldehyde-fixed bovine pericardium (GLBP) leaflets is known to reduce device durability. The aim of this study was to investigate a type of commercial-grade GLBP which has been over-looked in the literature to date; that of high collagen fibre dispersion (HD). Under uniaxial cyclic loading conditions, it was observed that the fatigue behaviour of HD GLBP was substantially equivalent to GLBP in which the fibres are highly aligned along the loading direction. It was also found that HD GLBP had a statistically significant 9.5% higher collagen content when compared to GLBP with highly aligned collagen fibres. The variability in diseased BHV delivery sites results in unpredictable and complex loading patterns across leaflets in vivo. This study presents the possibility of a shift from the traditional choice of circumferentially aligned GLBP leaflets, to that of high fibre dispersion arrangements. Characterised by its high fatigue life and increased collagen content, in addition to multiple fibre orientations, GLBP of high fibre dispersion may provide better patient outcomes under the multi-directional loading to which BHV leaflets are subjected in vivo.
Collapse
Affiliation(s)
- Alix Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Structural Heart Division, Boston Scientific Corporation, Galway, Ireland
| | - Elizabeth Williams
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - David R Nolan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Bruce Murphy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Paul S Gunning
- Structural Heart Division, Boston Scientific Corporation, Los Gatos, CA, 95032, USA
| | - David O'Reilly
- Structural Heart Division, Boston Scientific Corporation, Galway, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland. .,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Kostyunin AE, Yuzhalin AE, Rezvova MA, Ovcharenko EA, Glushkova TV, Kutikhin AG. Degeneration of Bioprosthetic Heart Valves: Update 2020. J Am Heart Assoc 2020; 9:e018506. [PMID: 32954917 PMCID: PMC7792365 DOI: 10.1161/jaha.120.018506] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The implantation of bioprosthetic heart valves (BHVs) is increasingly becoming the treatment of choice in patients requiring heart valve replacement surgery. Unlike mechanical heart valves, BHVs are less thrombogenic and exhibit superior hemodynamic properties. However, BHVs are prone to structural valve degeneration (SVD), an unavoidable condition limiting graft durability. Mechanisms underlying SVD are incompletely understood, and early concepts suggesting the purely degenerative nature of this process are now considered oversimplified. Recent studies implicate the host immune response as a major modality of SVD pathogenesis, manifested by a combination of processes phenocopying the long‐term transplant rejection, atherosclerosis, and calcification of native aortic valves. In this review, we summarize and critically analyze relevant studies on (1) SVD triggers and pathogenesis, (2) current approaches to protect BHVs from calcification, (3) obtaining low immunogenic BHV tissue from genetically modified animals, and (4) potential strategies for SVD prevention in the clinical setting.
Collapse
Affiliation(s)
- Alexander E Kostyunin
- Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation
| | - Arseniy E Yuzhalin
- Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation.,Department of Molecular and Cellular Oncology The University of Texas MD Anderson Cancer Center Houston TX
| | - Maria A Rezvova
- Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation
| | - Evgeniy A Ovcharenko
- Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation
| | - Tatiana V Glushkova
- Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation
| | - Anton G Kutikhin
- Department of Experimental Medicine Research Institute for Complex Issues of Cardiovascular Diseases Kemerovo Russian Federation
| |
Collapse
|