1
|
Schunk CT, Wang W, Sabo LN, Taufalele PV, Reinhart-King CA. Matrix stiffness increases energy efficiency of endothelial cells. Matrix Biol 2024; 133:77-85. [PMID: 39147247 DOI: 10.1016/j.matbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
To form blood vessels, endothelial cells rearrange their cytoskeleton, generate traction stresses, migrate, and proliferate, all of which require energy. Despite these energetic costs, stiffening of the extracellular matrix promotes tumor angiogenesis and increases cell contractility. However, the interplay between extracellular matrix, cell contractility, and cellular energetics remains mechanistically unclear. Here, we utilized polyacrylamide substrates with various stiffnesses, a real-time biosensor of ATP, and traction force microscopy to show that endothelial cells exhibit increasing traction forces and energy usage trend as substrate stiffness increases. Inhibition of cytoskeleton reorganization via ROCK inhibition resulted in decreased cellular energy efficiency, and an opposite trend was found when cells were treated with manganese to promote integrin affinity. Altogether, our data reveal a link between matrix stiffness, cell contractility, and cell energetics, suggesting that endothelial cells on stiffer substrates can better convert intracellular energy into cellular traction forces. Given the critical role of cellular metabolism in cell function, our study also suggests that not only energy production but also the efficiency of its use plays a vital role in regulating cell behaviors and may help explain how increased matrix stiffness promotes angiogenesis.
Collapse
Affiliation(s)
- Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lindsey N Sabo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
2
|
Janke U, Geist N, Weilbeer E, Levin W, Delcea M. Impact of Protein Corona Formation and Polystyrene Nanoparticle Functionalisation on the Interaction with Dynamic Biomimetic Membranes Comprising of Integrin. Chembiochem 2024; 25:e202400188. [PMID: 38743506 DOI: 10.1002/cbic.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Plastics, omnipresent in the environment, have become a global concern due to their durability and limited biodegradability, especially in the form of microparticles and nanoparticles. Polystyrene (PS), a key plastic type, is susceptible to fragmentation and surface alterations induced by environmental factors or industrial processes. With widespread human exposure through pollution and diverse industrial applications, understanding the physiological impact of PS, particularly in nanoparticle form (PS-NPs), is crucial. This study focuses on the interaction of PS-NPs with model blood proteins, emphasising the formation of a protein corona, and explores the subsequent contact with platelet membrane mimetics using experimental and theoretical approaches. The investigation involves αIIbβ3-expressing cells and biomimetic membranes, enabling real-time and label-free nanoscale precision. By employing quartz-crystal microbalance with dissipation monitoring studies, the concentration-dependent cytotoxic effects of differently functionalised ~210 nm PS-NPs on HEK293 cells overexpressing αIIbβ3 are evaluated in detail. The study unveils insights into the molecular details of PS-NP interaction with supported lipid bilayers, demonstrating that a protein corona formed in the presence of exemplary blood proteins offers protection against membrane damage, mitigating PS-NP cytotoxicity.
Collapse
Affiliation(s)
- Una Janke
- Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Norman Geist
- Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Emma Weilbeer
- Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Wanda Levin
- Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| |
Collapse
|
3
|
Napierkowski M, Janke U, Rong A, Delcea M, Bandaru SSM, Schulzke C, Bednarski PJ. Liposomal formulation of model pentathiepin improves solubility and stability toward glutathione while preserving anticancer activity. Arch Pharm (Weinheim) 2023; 356:e2300087. [PMID: 37507825 DOI: 10.1002/ardp.202300087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The biological properties of pentathiepins have been attracting increased attention in recent years. Experiments have shown a wide range of effects of pentathiepins in vitro, such as induction of apoptosis and alteration of mitochondrial membrane potential in cancer cells, and inhibition of antioxidant enzymes, for example, glutathione peroxidase 1 (GPx1). Biological evaluation is sometimes limited due to low aqueous solubility, high lipophilicity, and poor stability toward thiols, for example, glutathione (GSH). To assess whether liposomes are suitable as drug carriers to overcome these drawbacks, a model pentathiepin was formulated in a liposomal preparation. The success of loading liposomes with pentathiepins was evaluated by using ultraviolet-visible light (UV-Vis) spectroscopy, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC). Through inclusion into 100-nm-sized 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes, the aqueous solubility of a representative pentathiepin could be increased by several orders of magnitude to ca. 400 µM. The stability of the pentathiepin in the presence of GSH was increased fourfold as determined by UV-Vis spectroscopy. In antiproliferation experiments with two human cancer cell lines, no decrease in potency in the liposomal loaded pentathiepin compared to the free pentathiepin was found. In conclusion, liposomes are a suitable carrier for pentathiepins and improve both solubility and stability in the presence of thiols without compromising anticancer activity.
Collapse
Affiliation(s)
- Martin Napierkowski
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, Greifswald, Germany
| | - Una Janke
- Institut für Biochemie, Universität Greifswald, Greifswald, Germany
| | - Alena Rong
- Institut für Biochemie, Universität Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- Institut für Biochemie, Universität Greifswald, Greifswald, Germany
| | | | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Greifswald, Germany
| | - Patrick J Bednarski
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Reconstitution of Functional Integrin αIIbβ3 and Its Activation in Plasma Membrane-Mimetic Lipid Environments. MEMBRANES 2021; 11:membranes11070499. [PMID: 34209233 PMCID: PMC8304682 DOI: 10.3390/membranes11070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The study of the platelet receptor integrin αIIbβ3 in a membrane-mimetic environment without interfering signalling pathways is crucial to understand protein structure and dynamics. Our understanding of this receptor and its sequential activation steps has been tremendously progressing using structural and reconstitution approaches in model membranes, such as liposomes or supported-lipid bilayers. For most αIIbβ3 reconstitution approaches, saturated short-chain lipids have been used, which is not reflecting the native platelet cell membrane composition. We report here on the reconstitution of label-free full-length αIIbβ3 in liposomes containing cholesterol, sphingomyelin, and unsaturated phosphatidylcholine mimicking the plasma membrane that formed supported-lipid bilayers for quartz-crystal microbalance with dissipation (QCM-D) experiments. We demonstrate the relevance of the lipid environment and its resulting physicochemical properties on integrin reconstitution efficiency and its conformational dynamics. We present here an approach to investigate αIIbβ3 in a biomimetic membrane system as a useful platform do dissect disease-relevant integrin mutations and effects on ligand binding in a lipid-specific context, which might be applicable for drug screening.
Collapse
|
5
|
Martens U, Janke U, Möller S, Talbot D, Abou-Hassan A, Delcea M. Interaction of fibrinogen-magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. NANOSCALE 2020; 12:19918-19930. [PMID: 32986054 DOI: 10.1039/d0nr04181e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic nanoparticles have a broad spectrum of biomedical applications including cell separation, diagnostics and therapy. One key issue is little explored: how do the engineered nanoparticles interact with blood components after injection? The formation of bioconjugates in the bloodstream and subsequent reactions are potentially toxic due to the ability to induce an immune response. The understanding of the underlying processes is of major relevance to design not only efficient, but also safe nanoparticles for e.g. targeted drug delivery applications. In this study, we report on maghemite nanoparticles functionalized with citrate-, dextran- and polyethylene glycol coatings and their interaction with the clotting protein fibrinogen. Further, we investigate using biophysical tools (e.g. dynamic light scattering, circular dichroism spectroscopy and quartz crystal microbalance) the interaction of the magnetic nanoparticles-fibrinogen bioconjugates with artificial cell membranes as a model system for blood platelets. We found that fibrinogen corona formation provides colloidal stability to maghemite nanoparticles. In addition, bioconjugates of fibrinogen with dextran- and citrate-coated NPs interact with integrin-containing lipid bilayer, especially upon treatment with divalent ions, whereas PEG-coating reveals minor interaction. Our study at the interface of protein-conjugated nanoparticles and artificial cell membranes is essential for engineering safe nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Ulrike Martens
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Nitrosative stress affects the interaction of integrin alphaIIbbeta3 with its ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183198. [DOI: 10.1016/j.bbamem.2020.183198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022]
|
7
|
Zheng Y, Leftheris K. Insights into Protein–Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J Med Chem 2020; 63:5675-5696. [DOI: 10.1021/acs.jmedchem.9b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yajun Zheng
- Pliant Therapeutics, South San Francisco, California 94080, United States
| | - Katerina Leftheris
- Pliant Therapeutics, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Hirano A, Nagatoishi S, Wada M, Tsumoto K, Maluf KN, Arakawa T. Technical Capabilities and Limitations of Optical Spectroscopy and Calorimetry Using Water-Miscible Solvents: The Case of Dimethyl Sulfoxide, Acetonitrile, and 1,4-Dioxane. J Pharm Sci 2019; 109:524-531. [PMID: 31682831 DOI: 10.1016/j.xphs.2019.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
Abstract
In drug development, water-miscible solvents are commonly used to dissolve drug substances. Typical routine procedures in drug development include dilution of the stock drug solution into an aqueous solution containing target macromolecules for drug binding assays. However, water-miscible solvents impose some technical limitations on the assays on account of their light absorption and heat capacity. Here, we examined the effects of the dilution of 3 water-miscible solvents, that is, dimethyl sulfoxide, acetonitrile, and 1,4-dioxane, on the baseline stability and signal/noise ratio in circular dichroism spectroscopy, isothermal titration calorimetry, and differential scanning calorimetry. Dimethyl sulfoxide and 1,4-dioxane affect the signal/noise ratio of circular dichroism spectra at typically used concentrations due to their light absorbance. The water-miscible solvents generate interfering signals in the isothermal titration calorimetry due to their mixing heat. They show negative or positive slope in the differential scanning calorimetry. Such interfering effects of the solvents are reduced by appropriate dilution according to the analytical techniques. Because the water-miscible solvents have solubilization capacity for alkyl chain moieties and aromatic moieties of chemicals, drug substances containing these moieties can be dissolved into the solvents and then subjected to the analyses to examine their interactions with target proteins after appropriate dilution of the drug solutions.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Karl N Maluf
- Alliance Protein Laboratories, Division of KBI Biopharma, San Diego, California 92121
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, Division of KBI Biopharma, San Diego, California 92121
| |
Collapse
|