1
|
Detchou D, Barrie U. Interleukin 6 and cancer resistance in glioblastoma multiforme. Neurosurg Rev 2024; 47:541. [PMID: 39231832 DOI: 10.1007/s10143-024-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Despite unprecedented survival in patients with glioblastoma (GB), the aggressive primary brain cancer remains largely incurable and its mechanisms of treatment resistance have gained particular attention. The cytokine interleukin 6 (IL-6) and its receptor weave through the hallmarks of malignant gliomas and may represent a key vulnerability to GB. Known for activating the STAT3 pathway in autocrine fashion, IL-6 is amplified in GB and has been recognized as a negative biomarker for GB prognosis, rendering it a putative target of novel GB therapies. While it has been recognized as a biologically active component of GB for three decades only with concurrent advances in understanding of complementary immunotherapy has the concept of targeting IL-6 for a human clinical trial gained scientific footing.
Collapse
Affiliation(s)
- Donald Detchou
- School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
2
|
Hsiao YC, Dutta A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1211-1230. [PMID: 38498762 DOI: 10.1109/tcbb.2024.3378155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dynamic disease pathways are a combination of complex dynamical processes among bio-molecules in a cell that leads to diseases. Network modeling of disease pathways considers disease-related bio-molecules (e.g. DNA, RNA, transcription factors, enzymes, proteins, and metabolites) and their interaction (e.g. DNA methylation, histone modification, alternative splicing, and protein modification) to study disease progression and predict therapeutic responses. These bio-molecules and their interactions are the basic elements in the study of the misregulation in the disease-related gene expression that lead to abnormal cellular responses. Gene regulatory networks, cell signaling networks, and metabolic networks are the three major types of intracellular networks for the study of the cellular responses elicited from extracellular signals. The disease-related cellular responses can be prevented or regulated by designing control strategies to manipulate these extracellular or other intracellular signals. The paper reviews the regulatory mechanisms, the dynamic models, and the control strategies for each intracellular network. The applications, limitations and the prospective for modeling and control are also discussed.
Collapse
|
3
|
Lee D, V AADLR, Kim Y. Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:3876-3909. [PMID: 38549312 DOI: 10.3934/mbe.2024173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Aurelio A de Los Reyes V
- Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Bruinsmann FA, de Cristo Soares Alves A, de Fraga Dias A, Lopes Silva LF, Visioli F, Raffin Pohlmann A, Figueiró F, Sonvico F, Stanisçuaski Guterres S. Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. Int J Pharm 2022; 616:121563. [PMID: 35151819 DOI: 10.1016/j.ijpharm.2022.121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common and lethal malignant brain tumor. Despite simvastatin (SVT) showing potential anticancer properties, its antitumoral effect against glioblastoma appears limited when the conventional oral administration route is selected. As a consequence, nose-to-brain delivery has been proposed as an alternative route to deliver SVT into the brain. This study aimed to prepare chitosan-coated simvastatin-loaded lipid-core nanocapsules (LNCSVT-chit) suitable for nose-to-brain delivery and capable of fostering antitumor effects against glioblastoma both in vitro and in vivo. Results showed that the nanocapsules present adequate particle size (mean diameter below 200 nm), narrow particle size distribution (PDI < 0.2), positive zeta potential and high encapsulation efficiency (nearly 100%). In vitro cytotoxicity of LNCSVT-chit was comparable to non-encapsulated SVT in C6 rat glioma cells, whereas LNCSVT-chit were more cytotoxic than non-encapsulated SVT after 72 h of incubation against U-138 MG human glioblastoma cell line. In studies carried out in rats, LNCSVT-chit significantly enhanced the amount of drug in rat brain tissue after intranasal administration (2.4-fold) when compared with free SVT. Moreover, LNCSVT-chit promoted a significant decrease in tumor growth and malignancy in glioma-bearing rats in comparison to control and free SVT groups. Additionally, LNCSVT-chit did not cause any toxicity in treated rats. Considered overall, the results demonstrated that the nose-to-brain administration of LNCSVT-chit represents a novel potential strategy for glioblastoma treatment.
Collapse
Affiliation(s)
- Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035 000, Brazil
| | - Luiz Fernando Lopes Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035 000, Brazil
| | - Fernanda Visioli
- Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035 000, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Centre for Innovation in Health Products - Biopharmanet-TEC, University of Parma, Padiglione 33, Campus Universitario, 43124 Parma, PR, Italy.
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| |
Collapse
|
5
|
de los Reyes AA, Kim Y. Optimal regulation of tumour-associated neutrophils in cancer progression. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210705. [PMID: 35127110 PMCID: PMC8808100 DOI: 10.1098/rsos.210705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
In a tumour microenvironment, tumour-associated neutrophils could display two opposing differential phenotypes: anti-tumour (N1) and pro-tumour (N2) effector cells. Converting N2 to N1 neutrophils provides innovative therapies for cancer treatment. In this study, a mathematical model for N1-N2 dynamics describing the cancer survival and immune inhibition in response to TGF-β and IFN-β is considered. The effects of exogenous intervention of TGF-β inhibitor and IFN-β are examined in order to enhance N1 recruitment to combat tumour progression. Our approach employs optimal control theory to determine drug infusion protocols that could minimize tumour volume with least administration cost possible. Four optimal control scenarios corresponding to different therapeutic strategies are explored, namely, TGF-β inhibitor control only, IFN-β control only, concomitant TGF-β inhibitor and IFN-β controls, and alternating TGF-β inhibitor and IFN-β controls. For each scheme, different initial conditions are varied to depict different pathophysiological condition of a cancer patient, leading to adaptive treatment schedule. TGF-β inhibitor and IFN-β drug dosages, total drug amount, infusion times and relative cost of drug administrations are obtained under various circumstances. The control strategies achieved could guide in designing individualized therapeutic protocols.
Collapse
Affiliation(s)
- Aurelio A. de los Reyes
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Ho CH, Huang YJ, Lai YJ, Mukherjee R, Hsiao CK. The misuse of distributional assumptions in functional class scoring gene-set and pathway analysis. G3-GENES GENOMES GENETICS 2021; 12:6409857. [PMID: 34791175 PMCID: PMC8728032 DOI: 10.1093/g3journal/jkab365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
Gene-set analysis (GSA) is a standard procedure for exploring potential biological functions of a group of genes. The development of its methodology has been an active research topic in recent decades. Many GSA methods, when newly proposed, rely on simulation studies to evaluate their performance with an implicit assumption that the multivariate expression values are normally distributed. This assumption is commonly adopted in GSAs, particularly those in the group of functional class scoring (FCS) methods. The validity of the normality assumption, however, has been disputed in several studies, yet no systematic analysis has been carried out to assess the effect of this distributional assumption. Our goal in this study is not to propose a new GSA method but to first examine if the multi-dimensional gene expression data in gene sets follow a multivariate normal (MVN) distribution. Six statistical methods in three categories of MVN tests were considered and applied to a total of 24 RNA data sets. These RNA values were collected from cancer patients as well as normal subjects, and the values were derived from microarray experiments, RNA sequencing, and single-cell RNA sequencing. Our first finding suggests that the MVN assumption is not always satisfied. This assumption does not hold true in many applications tested here. In the second part of this research, we evaluated the influence of non-normality on the statistical power of current FCS methods, both parametric and nonparametric ones. Specifically, the scenario of mixture distributions representing more than one population for the RNA values was considered. This second investigation demonstrates that the non-normality distribution of the RNA values causes a loss in the statistical power of these GSA tests, especially when subtypes exist. Among the FCS GSA tools examined here and among the scenarios studied in this research, the N-statistics outperform the others. Based on the results from these two investigations, we conclude that the assumption of MVN should be used with caution when evaluating new GSA tools, since this assumption cannot be guaranteed and violation may lead to spurious results, loss of power, and incorrect comparison between methods. If a newly proposed GSA tool is to be evaluated, we recommend the incorporation of a wide range of multivariate non-normal distributions or sampling from large databases if available.
Collapse
Affiliation(s)
- Chi-Hsuan Ho
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yu-Jyun Huang
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Ying-Ju Lai
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | | | - Chuhsing Kate Hsiao
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| |
Collapse
|
7
|
Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies. PLoS Comput Biol 2021; 17:e1009457. [PMID: 34669701 PMCID: PMC8559965 DOI: 10.1371/journal.pcbi.1009457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/01/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
Acute administration of trastuzumab (TZB) may induce various forms of cognitive impairment. These cancer-related cognitive changes (CRCC) are regulated by an adverse biological process involving cancer stem cells (CSCs) and IL-6. Recent studies have reported that atorvastatin (ATV) may change the dynamic of cognitive impairment in a combination (TZB+ATV) therapy. In this study, we investigate the mutual interactions between cancer stem cells and the tumor cells that facilitate cognitive impairment during long term TZB therapy by developing a mathematical model that involves IL-6 and the key apoptotic regulation. These include the densities of tumor cells and CSCs, and the concentrations of intracellular signaling molecules (NFκB, Bcl-2, BAX). We apply the mathematical model to a single or combination (ATV+TZB) therapy used in the experiments to demonstrate that the CSCs can enhance CRCC by secreting IL-6 and ATV may interfere the whole regulation. We show that the model can both reproduce the major experimental observation on onset and prevention of CRCC, and suggest several important predictions to guide future experiments with the goal of the development of new anti-tumor and anti-CRCC strategies. Moreover, using this model, we investigate the fundamental mechanism of onset of cognitive impairment in TZB-treated patients and the impact of alternating therapies on the anti-tumor efficacy and intracellular response to different treatment schedules. A conventional drug, trastuzumab (TZB), was shown to be an effective weapon in killing cancer cells in brain. However, long term treatment of TZB increases the proportion of cancer stem cells (CSCs) in the tumour microenvironment (TME) and induces up-regulation of pro-tumoral molecules such as IL-6 in TME. These cancer cells then become more resistant to this chemotherapy through the IL-mediated up-regulation of NFκB and CSCs. More importantly, these changes in TME result in a serious side effect, cognitive impairment called cancer-related cognitive changes (CRCC). The detailed mechanism of CRCC is still poorly understood. However, cancer patients with chemotherapy-induced cognitive impairment can have long-term or delayed mental changes. In this study, we investigated the fundamental mechanism of CRCC in cancer patients based on experiments and a mathematical model that describes how tumor cells interact with CSCs in response to chemo drugs. In particular, we investigate how TZB-induced CSCs with modified IL-6 landscapes shape the cognitive functions in cancer patients. We showed that the combination treatment with another drug, atorvastatin (ATV), can abrogate the TZB-induced CRCC and enhance the survival probability of cancer patients by synergistic anti-tumor effect. We demonstrate that the cognitive functions and survival rates in cancer patients depend on the apoptotic signaling pathways via the critical communication and IL-6 landscapes of stimulated CTCs.
Collapse
|
8
|
Lee J, Lee D, Kim Y. Mathematical model of STAT signalling pathways in cancer development and optimal control approaches. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210594. [PMID: 34631119 PMCID: PMC8479343 DOI: 10.1098/rsos.210594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/10/2023]
Abstract
In various diseases, the STAT family display various cellular controls over various challenges faced by the immune system and cell death programs. In this study, we investigate how an intracellular signalling network (STAT1, STAT3, Bcl-2 and BAX) regulates important cellular states, either anti-apoptosis or apoptosis of cancer cells. We adapt a mathematical framework to illustrate how the signalling network can generate a bi-stability condition so that it will induce either apoptosis or anti-apoptosis status of tumour cells. Then, we use this model to develop several anti-tumour strategies including IFN-β infusion. The roles of JAK-STATs signalling in regulation of the cell death program in cancer cells and tumour growth are poorly understood. The mathematical model unveils the structure and functions of the intracellular signalling and cellular outcomes of the anti-tumour drugs in the presence of IFN-β and JAK stimuli. We identify the best injection order of IFN-β and DDP among many possible combinations, which may suggest better infusion strategies of multiple anti-cancer agents at clinics. We finally use an optimal control theory in order to maximize anti-tumour efficacy and minimize administrative costs. In particular, we minimize tumour volume and maximize the apoptotic potential by minimizing the Bcl-2 concentration and maximizing the BAX level while minimizing total injection amount of both IFN-β and JAK2 inhibitors (DDP).
Collapse
Affiliation(s)
- Jonggul Lee
- Pierre Louis Institute of Epidemiology and Public Health, Paris 75012, France
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
- Department of Neurosurgery, Harvard Medical School & Brigham and Women’s Hospital, Boston MA 02115, USA
| |
Collapse
|
9
|
Mondia MWL, Espiritu AI, Batara JMF, Jamora RDG. Neuro-oncology in the Philippines: a scoping review on the state of medical practice, deterrents to care and therapeutic gaps. Ecancermedicalscience 2021; 15:1238. [PMID: 34221121 PMCID: PMC8225337 DOI: 10.3332/ecancer.2021.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/09/2022] Open
Abstract
Background Neoplasms of the brain and spine are relatively uncommon compared to breast, lung and gastrointestinal tumours, which occur at higher rates in the Asian population. Updated guidelines in diagnosis and treatment of neuro-oncologic diseases recommend advanced molecular-based precision-medicine; thus the need for increasingly individualised regimens. It is, therefore, necessary to determine whether there are areas of improvement in the provision of care to these patients, especially in low- to middle-income economies like the Philippines. Methods In this study, we identified gaps in the delivery of medical care to Filipino patients with tumours of the central nervous system. We performed a scoping review on the available literature on clinical experience with treatment of neuro-oncologic cases from the Philippines and performed qualitative analysis viewed through the lens of the existing healthcare system. Results The medical practice of neuro-oncology in the Philippines lacks robust local data on epidemiology and treatment outcomes. There are existing legislative frameworks to support adequate healthcare delivery and financing to brain tumour patients. However, inequities in the geographic distribution of infrastructure, manpower and medications are roadblocks for accessibility to neuro-oncologic services like specialised molecular markers, neurosurgical procedures, sustained chemotherapy and radiation therapy centres. Conclusion There are significant treatment gaps in the care of neuro-oncologic patients in the Philippines that need to be addressed. Early detection and initiation of prognosis-changing therapeutics through reduction of out-of-pocket expenses, access to readily available diagnostic tools and sustainability of management regimens are the main areas that necessitate strengthened partnership between the public and private sectors of Philippine society.
Collapse
Affiliation(s)
- Mark Willy L Mondia
- Division of Adult Neurology, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Taft Ave, Ermita, Manila 1000, Philippines.,https://orcid.org/0000-0001-8862-5360
| | - Adrian I Espiritu
- Division of Adult Neurology, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Taft Ave, Ermita, Manila 1000, Philippines.,Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines.,https://orcid.org/0000-0001-5621-1833
| | - Julette Marie F Batara
- Division of Adult Neurology, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Taft Ave, Ermita, Manila 1000, Philippines.,Institute for Neurosciences, St. Luke's Medical Center, Quezon City & Global City 1112, Philippines
| | - Roland Dominic G Jamora
- Division of Adult Neurology, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Taft Ave, Ermita, Manila 1000, Philippines.,Institute for Neurosciences, St. Luke's Medical Center, Quezon City & Global City 1112, Philippines.,https://orcid.org/0000-0001-5317-7369
| |
Collapse
|
10
|
Aspirin AP, de Los Reyes V AA, Kim Y. Polytherapeutic strategies with oncolytic virus-bortezomib and adjuvant NK cells in cancer treatment. J R Soc Interface 2021; 18:20200669. [PMID: 33402021 PMCID: PMC7879760 DOI: 10.1098/rsif.2020.0669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteasome inhibition and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts the degradation of proteins in the cell leading to accumulation of unfolded proteins inducing apoptosis. On the other hand, oncolytic virotherapy uses genetically modified oncolytic viruses (OV) to infect cancer cells, induce cell lysis, and activate an antitumour response. In this work, optimal control theory is used to minimize the cancer cell population by identifying strategic infusion protocols of bortezomib, OV and natural killer (NK) cells. Three different therapeutic protocols are explored: (i) periodic bortezomib and single administrations of both OV and NK cells therapy; (ii) alternating sequential combination therapy; and (iii) NK cell depletion and infusion therapy. In the first treatment scheme, early OV administration followed by well-timed adjuvant NK cell infusion maximizes antitumour efficacy. The second strategy supports timely OV infusion. The last treatment scheme indicates that transient NK cell depletion followed by appropriate NK cell adjuvant therapy yields the maximal benefits. Relative doses and administrative costs of the three anticancer agents for each approach are qualitatively presented. This study provides potential polytherapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Angelica P Aspirin
- Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., U.P. Campus, Diliman, 1101 Quezon City, Philippines
| | - Aurelio A de Los Reyes V
- Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., U.P. Campus, Diliman, 1101 Quezon City, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Columbus, OH, USA
| |
Collapse
|
11
|
Kim Y, Lee D, Lawler S. Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190390. [PMID: 32713306 DOI: 10.1098/rstb.2019.0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with a short median survival time. GBM is characterized by the hallmarks of aggressive proliferation and cellular infiltration of normal brain tissue. miR-451 and its downstream molecules are known to play a pivotal role in regulation of the balance of proliferation and aggressive invasion in response to metabolic stress in the tumour microenvironment (TME). Surgery-induced transition in reactive astrocyte populations can play a significant role in tumour dynamics. In this work, we develop a multi-scale mathematical model of miR-451-LKB1-AMPK-OCT1-mTOR pathway signalling and individual cell dynamics of the tumour and reactive astrocytes after surgery. We show how the effects of fluctuating glucose on tumour cells need to be reprogrammed by taking into account the recent history of glucose variations and an AMPK/miR-451 reciprocal feedback loop. The model shows how variations in glucose availability significantly affect the activity of signalling molecules and, in turn, lead to critical cell migration. The model also predicts that microsurgery of a primary tumour induces phenotypical changes in reactive astrocytes and stem cell-like astrocytes promoting tumour cell proliferation and migration by Cxcl5. Finally, we investigated a new anti-tumour strategy by Cxcl5-targeting drugs. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Budia I, Alvarez-Arenas A, Woolley TE, Calvo GF, Belmonte-Beitia J. Radiation protraction schedules for low-grade gliomas: a comparison between different mathematical models. J R Soc Interface 2019; 16:20190665. [PMID: 31822220 DOI: 10.1098/rsif.2019.0665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We optimize radiotherapy (RT) administration strategies for treating low-grade gliomas. Specifically, we consider different tumour growth laws, both with and without spatial effects. In each scenario, we find the optimal treatment in the sense of maximizing the overall survival time of a virtual low-grade glioma patient, whose tumour progresses according to the examined growth laws. We discover that an extreme protraction therapeutic strategy, which amounts to substantially extending the time interval between RT sessions, may lead to better tumour control. The clinical implications of our results are also presented.
Collapse
Affiliation(s)
- I Budia
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - A Alvarez-Arenas
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - T E Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| | - G F Calvo
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - J Belmonte-Beitia
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|