1
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
2
|
Santos FR, Rossetto IMU, Montico F, de Almeida Lamas C, Cagnon VHA. Differential tempol effects in prostatic cancer: angiogenesis and short- and long-term treatments. J Mol Histol 2024; 55:253-264. [PMID: 38551737 DOI: 10.1007/s10735-024-10187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/06/2024] [Indexed: 05/21/2024]
Abstract
Prostate cancer (PCa) is the second cause of cancer death among men worldwide. Several processes are involved in the development and progression of PCa such as angiogenesis, inflammation and oxidative stress. The present study investigated the effect of short- or long-term Tempol treatment at different stages of prostate adenocarcinoma progression, focusing on angiogenic, proliferative, and stromal remodeling processes in TRAMP mice. The dorsolateral lobe of the prostate of TRAMP mice were evaluated at two different stages of PCa progression; early and late stages. Early stage was again divided into, short- or long-term. 50 mg/kg Tempol dose was administered orally. The results demonstrated that Tempol mitigated the prostate histopathological lesion progressions in the TRAMP mice in all treated groups. However, Tempol increased molecules involved in the angiogenic process such as CD31 and VEGFR2 relative frequencies, particularly in long-term treatment. In addition, Tempol upregulated molecule levels involved in angiogenesis and stromal remodeling process VEGF, TGF-β1, VE-cadherin and vimentin, particularly, in T8-16 group. Thus, it was concluded that Tempol treatment delayed prostatic lesion progression in the dorsolateral lobe of the TRAMP mice. However, Tempol also led to pro-angiogenic effects and glandular stromal microenvironment imbalance, especially, in the long-term treatment.
Collapse
Affiliation(s)
- Felipe Rabelo Santos
- Department of Structural and Functional Biology-Institute of Biology, State University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP, 13083-862, Brazil
| | - Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology-Institute of Biology, State University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP, 13083-862, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology-Institute of Biology, State University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP, 13083-862, Brazil
| | - Celina de Almeida Lamas
- Department of Structural and Functional Biology-Institute of Biology, State University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP, 13083-862, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology-Institute of Biology, State University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
3
|
Hermes TDA, Fratini P, Nascimento BG, Ferreira LL, Petri G, Fonseca FLA, Carvalho AADS, Feder D. Trilobatin contributes to the improvement of myopathy in a mouse model of Duchenne muscular dystrophy. Int J Exp Pathol 2024; 105:75-85. [PMID: 38477495 PMCID: PMC10951423 DOI: 10.1111/iep.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Anatomy, ICBFederal University of Alfenas (UNIFAL‐MG)AlfenasMinas GeraisBrazil
| | - Paula Fratini
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| | | | - Laís Leite Ferreira
- Department of Anatomy, ICBFederal University of Alfenas (UNIFAL‐MG)AlfenasMinas GeraisBrazil
| | - Giuliana Petri
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| | | | | | - David Feder
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| |
Collapse
|
4
|
da Rocha GL, Guimarães DSPSF, da Cruz MV, Mizobuti DS, da Silva HNM, Pereira ECL, Silveira LR, Minatel E. Antioxidant effects of LEDT in dystrophic muscle cells: involvement of PGC-1α and UCP-3 pathways. Photochem Photobiol Sci 2024; 23:107-118. [PMID: 38057632 DOI: 10.1007/s43630-023-00506-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.
Collapse
Affiliation(s)
- Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Marcos Vinicius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil.
| |
Collapse
|
5
|
Hermes TDA, Mâncio RD, Mizobutti DS, Macedo AB, Kido LA, Cagnon Quitete VHA, Minatel E. Cilostazol attenuates oxidative stress and apoptosis in the quadriceps muscle of the dystrophic mouse experimental model. Int J Exp Pathol 2023; 104:13-22. [PMID: 36565167 PMCID: PMC9845609 DOI: 10.1111/iep.12461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most severe and frequent form of muscular dystrophy. The mdx mouse is one of the most widely used experimental models to understand aspects of the biology of dystrophic skeletal muscles and the mechanisms of DMD. Oxidative stress and apoptosis are present in early stages of the disease in mdx mice. The high production of reactive oxygen species (ROS) causes activation of apoptotic death regulatory proteins due to DNA damage and breakdown of nuclear and mitochondrial membranes. The quadriceps (QUA) muscle of the mdx mouse is a good tool to study oxidative events. Previous studies have demonstrated that cilostazol exerts an anti-oxidant effect by decreasing the production of reactive oxygen species (ROS). The present study aimed to evaluate the ability of cilostazol to modulate oxidative stress and apoptosis in the QUA muscle of mdx mice. Fourteen-day-old mdx mice received cilostazol or saline for 14 days. C57BL/10 mice were used as a control. In the QUA muscle of mdx mice, cilostazol treatment decreased ROS production (-74%), the number of lipofuscin granules (-47%), lipid peroxidation (-11%), and the number of apoptotic cells (-66%). Thus cilostazol showed anti-oxidant and anti-apoptotic action in the QUA muscle of mdx mice.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
- Departament of Anatomy, Institute of Biomedical SciencesFederal University of Alfenas (UNIFAL‐MG)AlfenasBrazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Daniela Sayuri Mizobutti
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | | | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| |
Collapse
|
6
|
Wang F, Hong Y, Jiang W, Wang Y, Chen M, Zang D, Zhu Q. ROS-mediated inflammatory response in liver damage via regulating the Nrf2/HO-1/NLRP3 pathway in mice with trichloroethylene hypersensitivity syndrome. J Immunotoxicol 2022; 19:100-108. [PMID: 36070617 DOI: 10.1080/1547691x.2022.2111003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Trichloroethylene hypersensitivity syndrome (THS), mainly caused by occupational exposure to trichloroethylene (TCE), can give rise to serious and fatal hepatic damage. To date, the precise mechanisms of hepatic damage in THS remain unclear. Recent studies showed that reactive oxygen species (ROS) play a core role in cell death and inflammatory response. Therefore, the present study sought to explore whether ROS-mediated inflammatory responses contribute to the hepatic damage in TCE sensitization. To this end, a mouse model of TCE sensitization was established; in some cases, hosts were pretreated with tempol, an ROS scavenger. The results showed that TCE sensitization caused hepatic pathological/functional changes, ROS generation, and oxidative stress, alterations of the anti-oxidant defense Nrf2/HO-1/NLRP3 pathway, and pro-inflammatory cytokine formation in the liver. ROS scavenging via pretreatment with tempol was found not only to inhibit the hepatic oxidative stress, but also to regulate Nrf2/HO-1/NLRP3 pathway activity. In all cases, tempol was able to mitigate the pathologic changes induced by TCE sensitization. In summary, the results here demonstrated a novel molecular mechanism wherein ROS-mediated inflammatory responses play a central role in TCE-induced liver damage. Therapies targeting ROS scavenging could help to protect against hepatic damage by regulating Nrf2/HO-1/NLRP3 pathway activities in TCE-sensitized hosts.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, Second Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Wei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research and Experiment, Anhui Medical University, Hefei, China
| | - Qixing Zhu
- Key Laboratory of Dermatology, Ministry of Education, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Mizobuti DS, da Rocha GL, da Silva HNM, Covatti C, de Lourenço CC, Pereira ECL, Salvador MJ, Minatel E. Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy. Cell Stress Chaperones 2022; 27:417-429. [PMID: 35687225 PMCID: PMC9346048 DOI: 10.1007/s12192-022-01282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 01/03/2023] Open
Abstract
Indigo is a bis-indolic alkaloid that has antioxidant and anti-inflammatory effects reported in literature and is a promissory compound for treating chronic inflammatory diseases. This fact prompted to investigate the effects of this alkaloid in the experimental model of Duchenne muscular dystrophy. The main aim of this study was to evaluate the potential role of the indigo on oxidative stress and related signaling pathways in primary skeletal muscle cell cultures and in the diaphragm muscle from mdx mice. The MTT and Neutral Red assays showed no indigo dose-dependent toxicities in mdx muscle cells at concentrations analyzed (3.12, 6.25, 12.50, and 25.00 μg/mL). Antioxidant effect of indigo, in mdx muscle cells and diaphragm muscle, was demonstrated by reduction in 4-HNE content, H2O2 levels, DHE reaction, and lipofuscin granules. A significant decrease in the inflammatory process was identified by a reduction on TNF and NF-κB levels, on inflammatory area, and on macrophage infiltration in the dystrophic sample, after indigo treatment. Upregulation of PGC-1α and SIRT1 in dystrophic muscle cells treated with indigo was also observed. These results suggest the potential of indigo as a therapeutic agent for muscular dystrophy, through their action anti-inflammatory, antioxidant, and modulator of SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Daniela Sayuri Mizobuti
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Guilherme Luiz da Rocha
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Caroline Covatti
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Caroline Caramano de Lourenço
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Elaine Cristina Leite Pereira
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
- Faculdade de Ceilândia, Universidade de Brasília (UnB), Brasília, Distrito Federal, 72220-275, Brazil
| | - Marcos José Salvador
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Elaine Minatel
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
8
|
Rocha GLD, Rupcic IF, Mizobuti DS, Hermes TDA, Covatti C, Silva HNMD, Araujo HN, Lourenço CCD, Silveira LDR, Pereira ECL, Minatel E. Cross-talk between TRPC-1, mTOR, PGC-1α and PPARδ in the dystrophic muscle cells treated with tempol. Free Radic Res 2022; 56:245-257. [PMID: 35549793 DOI: 10.1080/10715762.2022.2074842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Ca2+ dysregulation and oxidative damage appear to have a central role in Duchenne muscular dystrophy (DMD) progression. The current study provides muscle cell-specific insights into the effect of Tempol on the TRPC 1 channel; on the positive and negative regulators of muscle cell differentiation; on the antioxidant enzymatic system; on the activators of mitochondrial biogenesis; and on the inflammatory process in the dystrophic primary muscle cells in culture. METHODS Mdx myotubes were treated with Tempol (5 mM) for 24 h. Untreated mdx myotubes and C57BL/10 myotubes were used as controls. RESULTS The Trypan Blue, MTT and Live/Dead Cell assays showed that Tempol (5 mM) presented no cytotoxic effect on the dystrophic muscle cells. The Tempol treated-mdx muscle cells showed significantly lower levels in the fluorescence intensity of intracellular calcium; TRPC-1 channel; MyoD; H2O2 and O2•- production; 4-HNE levels; SOD2, CAT and GPx levels; and TNF levels. On the other hand, SOD, CAT and GR mRNA relative expression were significantly higher in Tempol treated-mdx muscle cells. In addition, higher levels of Myogenin, MHC-Slow, mTOR, PGC-1α and PPARδ were also observed in Tempol treated-mdx muscle cells. CONCLUSION Our findings demonstrated that Tempol decreased intracellular calcium and oxidative stress in primary dystrophic muscle cells, promoting a cross-talk between TRPC-1, mTOR, PGC-1α and PPARδ.
Collapse
Affiliation(s)
- Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Ian Feller Rupcic
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Túlio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Hygor Nunes Araujo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Leonardo Dos Reis Silveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Universidade de Brasília (UnB), Faculdade de Ceilândia, Brasília, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Ponzetti M, Ucci A, Maurizi A, Giacchi L, Teti A, Rucci N. Lipocalin 2 Influences Bone and Muscle Phenotype in the MDX Mouse Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23020958. [PMID: 35055145 PMCID: PMC8780970 DOI: 10.3390/ijms23020958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Lipocalin 2 (Lcn2) is an adipokine involved in bone and energy metabolism. Its serum levels correlate with bone mechanical unloading and inflammation, two conditions representing hallmarks of Duchenne Muscular Dystrophy (DMD). Therefore, we investigated the role of Lcn2 in bone loss induced by muscle failure in the MDX mouse model of DMD. We found increased Lcn2 serum levels in MDX mice at 1, 3, 6, and 12 months of age. Consistently, Lcn2 mRNA was higher in MDX versus WT muscles. Immunohistochemistry showed Lcn2 expression in mononuclear cells between muscle fibres and in muscle fibres, thus confirming the gene expression results. We then ablated Lcn2 in MDX mice, breeding them with Lcn2−/− mice (MDXxLcn2−/−), resulting in a higher percentage of trabecular volume/total tissue volume compared to MDX mice, likely due to reduced bone resorption. Moreover, MDXxLcn2−/− mice presented with higher grip strength, increased intact muscle fibres, and reduced serum creatine kinase levels compared to MDX. Consistently, blocking Lcn2 by treating 2-month-old MDX mice with an anti-Lcn2 monoclonal antibody (Lcn2Ab) increased trabecular volume, while reducing osteoclast surface/bone surface compared to MDX mice treated with irrelevant IgG. Grip force was also increased, and diaphragm fibrosis was reduced by the Lcn2Ab. These results suggest that Lcn2 could be a possible therapeutic target to treat DMD-induced bone loss.
Collapse
|
10
|
The Interplay of Mitophagy and Inflammation in Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11070648. [PMID: 34357020 PMCID: PMC8307817 DOI: 10.3390/life11070648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.
Collapse
|
11
|
da Silva HNM, Covatti C, da Rocha GL, Mizobuti DS, Mâncio RD, Hermes TDA, Kido LA, Cagnon VHA, Pereira ECL, Minatel E. Oxidative Stress, Inflammation, and Activators of Mitochondrial Biogenesis: Tempol Targets in the Diaphragm Muscle of Exercise Trained- mdx Mice. Front Physiol 2021; 12:649793. [PMID: 33981250 PMCID: PMC8107395 DOI: 10.3389/fphys.2021.649793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
The mdx mouse phenotype aggravated by chronic exercise on a treadmill makes this murine model more reliable for the study of muscular dystrophy. Thus, to better assess the Tempol effect on dystrophic pathways, the analyses in this study were performed in the blood samples and diaphragm muscle from treadmill trained adult (7–11-weeks old) mdx animals. The mdx mice were divided into three groups: mdxSed, sedentary controls (n = 28); mdxEx, exercise-trained animals (n = 28); and mdxEx+T, exercise-trained animals with the Tempol treatment (n = 28). The results demonstrated that the Tempol treatment promoted muscle strength gain, prevented muscle damage, reduced the inflammatory process, oxidative stress, and angiogenesis regulator, and up regulated the activators of mitochondrial biogenesis. The main new findings of this study are that Tempol reduced the NF-κB and increased the PGC1-α and PPARδ levels in the exercise-trained-mdx mice, which are probably related to the ability of this antioxidant to scavenge excessive ROS. These results reinforce the use of Tempol as a potential therapeutic strategy in DMD.
Collapse
Affiliation(s)
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.,Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Micheletto MLJ, Hermes TDA, Bertassoli BM, Petri G, Perez MM, Fonseca FLA, Carvalho AADS, Feder D. Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophin-deficient mdx mice. Int J Exp Pathol 2021; 102:11-21. [PMID: 33296126 PMCID: PMC7839951 DOI: 10.1111/iep.12383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dystrophin deficiency makes the sarcolemma fragile and susceptible to degeneration in Duchenne muscular dystrophy. The proteasome is a multimeric protease complex and is central to the regulation of cellular proteins. Previous studies have shown that proteasome inhibition improved pathological changes in mdx mice. Ixazomib is the first oral proteasome inhibitor used as a therapy in multiple myeloma. This study investigated the effects of ixazomib on the dystrophic muscle of mdx mice. MDX mice were treated with ixazomib (7.5 mg/kg/wk by gavage) or 0.2 mL of saline for 12 weeks. The Kondziela test was performed to measure muscle strength. The tibialis anterior (TA) and diaphragm (DIA) muscles were used for morphological analysis, and blood samples were collected for biochemical measurement. We observed maintenance of the muscle strength in the animals treated with ixazomib. Treatment with ixazomib had no toxic effect on the mdx mouse. The morphological analysis showed a reduction in the inflammatory area and fibres with central nuclei in the TA and DIA muscles and an increase in the number of fibres with a diameter of 20 µm2 in the DIA muscle after treatment with ixazomib. There was an increase in the expression of dystrophin and utrophin in the TA and DIA muscles and a reduction in the expression of osteopontin and TGF-β in the DIA muscle of mdx mice treated with ixazomib. Ixazomib was thus shown to increase the expression of dystrophin and utrophin associated with improved pathological and functional changes in the dystrophic muscles of mdx mice.
Collapse
Affiliation(s)
| | - Tulio de Almeida Hermes
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
- Departament of AnatomyFederal University of AlfenasAlfenasBrazil
| | | | - Giuliana Petri
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| | | | | | | | - David Feder
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| |
Collapse
|
13
|
Hermes TDA, Mizobuti DS, da Rocha GL, da Silva HNM, Covatti C, Pereira ECL, Ferretti R, Minatel E. Tempol improves redox status in mdx dystrophic diaphragm muscle. Int J Exp Pathol 2020; 101:289-297. [PMID: 33098599 DOI: 10.1111/iep.12376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is a critical element in relationship to the pathophysiology of Duchenne muscular dystrophy (DMD). In the mice the diaphragm (DIA) is most resembles the dystrophic human pathology. In this study we have evaluated the consequences of a synthetic antioxidant (tempol) on oxidative stress parameters in the DIA muscle of mdx mice. The mdx mice were separated into two groups: mdx, the control group receiving intraperitoneal (i.p.) injections of saline solution (100 µL), and mdxT, the treated group receiving i.p. injections of tempol (100 mg/kg). The tempol-treated group showed reduced oxidative stress markers, decreasing the dihydroethidium reaction (DHE) area; autofluorescent lipofuscin granules; and 4-hydroxynonenal (4-HNE)-protein adduct levels. DIA muscle of mdx mice. At the same time, the manganese-superoxide dismutase 2 (SOD2) levels were increased in the tempol-treated group. In addition, the tempol-treated group showed reduced levels of glutathione-disulphide reductase (GSR), glutathione peroxidase 1 (GPx1) and catalase (CAT) in immunoblots. The tempol-treated group has also shown lower relative gene expression of SOD1, CAT and GPx than the non-treated group. Our data demonstrated that tempol treatment reduced oxidant parameters and increased anti-oxidant SOD2 levels in the DIA muscle of mdx mice, which may contribute to the normalization of the redox homeostasis of dystrophic muscles.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.,Faculty of Ceilandia, University of Brasilia (UnB), Brasília, Brazil
| | - Renato Ferretti
- Department of Anatomy, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
14
|
Brown LA, Guzman SD, Brooks SV. Emerging molecular mediators and targets for age-related skeletal muscle atrophy. Transl Res 2020; 221:44-57. [PMID: 32243876 PMCID: PMC8026108 DOI: 10.1016/j.trsl.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
The age-associated decline in muscle mass has become synonymous with physical frailty among the elderly due to its major contribution in reduced muscle function. Alterations in protein and redox homeostasis along with chronic inflammation, denervation, and hormonal dysregulation are all hallmarks of muscle wasting and lead to clinical sarcopenia in older adults. Reduction in skeletal muscle mass has been observed and reported in the scientific literature for nearly 2 centuries; however, identification and careful examination of molecular mediators of age-related muscle atrophy have only been possible for roughly 3 decades. Here we review molecular targets of recent interest in age-related muscle atrophy and briefly discuss emerging small molecule therapeutic treatments for muscle wasting in sarcopenic susceptible populations.
Collapse
Affiliation(s)
- Lemuel A Brown
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Steve D Guzman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
15
|
N-acetylcysteine Decreases Fibrosis and Increases Force-Generating Capacity of mdx Diaphragm. Antioxidants (Basel) 2019; 8:antiox8120581. [PMID: 31771272 PMCID: PMC6943616 DOI: 10.3390/antiox8120581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Respiratory muscle weakness occurs due to dystrophin deficiency in Duchenne muscular dystrophy (DMD). The mdx mouse model of DMD shows evidence of impaired respiratory muscle performance with attendant inflammation and oxidative stress. We examined the effects of N-acetylcysteine (NAC) supplementation on respiratory system performance in mdx mice. Eight-week-old male wild type (n = 10) and mdx (n = 20) mice were studied; a subset of mdx (n = 10) received 1% NAC in the drinking water for 14 days. We assessed breathing, diaphragm, and external intercostal electromyogram (EMG) activities and inspiratory pressure during ventilatory and non-ventilatory behaviours. Diaphragm muscle structure and function, cytokine concentrations, glutathione status, and mRNA expression were determined. Diaphragm force-generating capacity was impaired in mdx compared with wild type. Diaphragm muscle remodelling was observed in mdx, characterized by increased muscle fibrosis, immune cell infiltration, and central myonucleation. NAC supplementation rescued mdx diaphragm function. Collagen content and immune cell infiltration were decreased in mdx + NAC compared with mdx diaphragms. The cytokines IL-1β, IL-6 and KC/GRO were increased in mdx plasma and diaphragm compared with wild type; NAC decreased systemic IL-1β and KC/GRO concentrations in mdx mice. We reveal that NAC treatment improved mdx diaphragm force-generating capacity associated with beneficial anti-inflammatory and anti-fibrotic effects. These data support the potential use of NAC as an adjunctive therapy in human dystrophinopathies.
Collapse
|
16
|
Macedo AB, Mizobuti DS, Hermes TDA, Mâncio RD, Pertille A, Kido LA, Cagnon VHA, Minatel E. Photobiomodulation Therapy for Attenuating the Dystrophic Phenotype of Mdx Mice. Photochem Photobiol 2019; 96:200-207. [PMID: 31733143 DOI: 10.1111/php.13179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
This study analyzed photobiomodulation therapy (PBMT) effects on regenerative, antioxidative, anti-inflammatory and angiogenic markers in the dystrophic skeletal muscle of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD), during the acute phase of dystrophy disease. The following groups were set up: Ctrl (control group of normal wild-type mice; C57BL/10); mdx (untreated mdx mice); mdxPred (mdx mice treated with prednisolone) and mdxLA (mdx mice treated with PBMT). The PBMT was carried out using an Aluminum Gallium Arsenide (AIGaAs; IBRAMED® laserpulse) diode, 830 nm wavelength, applied on the dystrophic quadriceps muscle. The mdxLA group showed a degenerative and regenerative area reduction simultaneously with a MyoD level increase, ROS production and inflammatory marker reduction and up-regulation in the VEGF factor. In addition, PBMT presented similar effects to prednisolone treatment in most of the parameters analyzed. In conclusion, our results indicate that PBMT in the parameters selected attenuated the dystrophic phenotype of mdx mice, improving skeletal muscle regeneration; reducing the oxidative stress and inflammatory process; and up-regulating the angiogenic marker.
Collapse
Affiliation(s)
- Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tulio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael Dias Mâncio
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, SP, Brazil
| | - Larissa Akemi Kido
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valéria Helena Alves Cagnon
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|