1
|
Munnings R, Gibbs P, Lee B. Evolution of Liquid Biopsies for Detecting Pancreatic Cancer. Cancers (Basel) 2024; 16:3335. [PMID: 39409954 PMCID: PMC11475855 DOI: 10.3390/cancers16193335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by late diagnosis and poor prognosis. Despite advancements, current diagnostic and prognostic strategies remain limited. Liquid biopsy techniques, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), circulating tumour exosomes, and proteomics, offer potential solutions to improve PDAC diagnosis, prognostication, and management. A systematic search of Ovid MEDLINE identified studies published between 2019 and 2024, focusing on liquid biopsy biomarkers for PDAC. A total of 49 articles were included. ctDNA research shows some promise in diagnosing and prognosticating PDAC, especially through detecting mutant KRAS in minimal residual disease assays. CTC analyses had low sensitivity for early-stage PDAC and inconsistent prognostic results across subpopulations. Exosomal studies revealed diverse biomarkers with some diagnostic and prognostic potential. Proteomics, although relatively novel, has demonstrated superior accuracy in PDAC diagnosis, including early detection, and notable prognostic capacity. Proteomics combined with CA19-9 analysis has shown the most promising results to date. An update on multi-cancer early detection testing, given its significance for population screening, is also briefly discussed. Liquid biopsy techniques offer promising avenues for improving PDAC diagnosis, prognostication, and management. In particular, proteomics shows considerable potential, yet further research is needed to validate existing findings and comprehensively explore the proteome using an unbiased approach.
Collapse
Affiliation(s)
- Ryan Munnings
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Education, Melbourne Medical School, Parkville, VIC 3052, Australia
| | - Peter Gibbs
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Western Health, Footscray, VIC 3011, Australia
| | - Belinda Lee
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC 3052, Australia
- Northern Health, Epping, VIC 3076, Australia
| |
Collapse
|
2
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
3
|
Yang J, Zhang Z, Lam JSW, Fan H, Fu NY. Molecular Regulation and Oncogenic Functions of TSPAN8. Cells 2024; 13:193. [PMID: 38275818 PMCID: PMC10814125 DOI: 10.3390/cells13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ziyan Zhang
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanne Shi Woon Lam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
4
|
Vahabi M, Comandatore A, Centra C, Blandino G, Morelli L, Giovannetti E. Thinking small to win big? A critical review on the potential application of extracellular vesicles for biomarker discovery and new therapeutic approaches in pancreatic cancer. Semin Cancer Biol 2023; 97:50-67. [PMID: 37956937 DOI: 10.1016/j.semcancer.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly form of cancer, with limited progress in 5-year survival rates despite significant research efforts. The main challenges in treating PDAC include difficulties in early detection, and resistance to current therapeutic approaches due to aggressive molecular and microenvironment features. These challenges emphasize the importance of identifying clinically validated biomarkers for early detection and clinical management. Extracellular vesicles (EVs), particularly exosomes, have emerged as crucial mediators of intercellular communication by transporting molecular cargo. Recent research has unveiled their role in initiation, metastasis, and chemoresistance of PDAC. Consequently, utilizing EVs in liquid biopsies holds promise for the identification of biomarkers for early detection, prognosis, and monitoring of drug efficacy. However, numerous limitations, including challenges in isolation and characterization of homogeneous EVs populations, as well as the absence of standardized protocols, can affect the reliability of studies involving EVs as biomarkers, underscoring the necessity for a prudent approach. EVs have also garnered considerable attention as a promising drug delivery system and novel therapy for tumors. The loading of biomolecules or chemical drugs into exosomes and their subsequent delivery to target cells can effectively impede tumor progression. Nevertheless, there are obstacles that must be overcome to ensure the accuracy and efficacy of therapies relying on EVs for the treatment of tumors. In this review, we examine both recent advancements and remaining obstacles, exploring the potential of utilizing EVs in biomarker discovery as well as for the development of drug delivery vehicles.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Annalisa Comandatore
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Centra
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, Rome, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
5
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
6
|
Jiang Z, Wang H, Mou Y, Li L, Jin W. Functions and clinical applications of exosomes in pancreatic cancer. Mol Biol Rep 2022; 49:11037-11048. [PMID: 36097109 PMCID: PMC9618535 DOI: 10.1007/s11033-022-07765-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors and has an abysmal prognosis, with a 5-year survival rate of only 11%. At present, the main clinical dilemmas in PC are the lack of biomarkers and the unsatisfactory therapeutic effects. The treatments for and outcomes of PC have improved, but remain unsatisfactory. Exosomes are nanosized extracellular vesicles, and an increasing number of studies have found that exosomes play an essential role in tumor pathology. In this review, we describe the process of exosome biogenesis, as well as exosome extraction methods and identification strategies, and we then explain in detail the roles and mechanisms of exosomes in invasion, metastasis, chemoresistance and immunosuppression in PC. Finally, we summarize the clinical applications of exosomes. Our observations indicate that exosomes represent a novel direction in the clinical treatment of PC.
Collapse
Affiliation(s)
- Zhichen Jiang
- Department of General Surgery,Devision of Gastroenterology and Pancreas, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Huiju Wang
- Department of General Surgery,Devision of Gastroenterology and Pancreas, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Gastroenterology of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yiping Mou
- Department of General Surgery,Devision of Gastroenterology and Pancreas, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Gastroenterology of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Li Li
- Department of General Surgery,Devision of Gastroenterology and Pancreas, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Gastroenterology of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Weiwei Jin
- Department of General Surgery,Devision of Gastroenterology and Pancreas, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Gastroenterology of Zhejiang Province, 310014, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhang W, Campbell DH, Walsh BJ, Packer NH, Liu D, Wang Y. Cancer-derived small extracellular vesicles: emerging biomarkers and therapies for pancreatic ductal adenocarcinoma diagnosis/prognosis and treatment. J Nanobiotechnology 2022; 20:446. [PMID: 36242076 PMCID: PMC9563798 DOI: 10.1186/s12951-022-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.
Collapse
Affiliation(s)
- Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | | | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, 2113, Sydney, NSW, Australia
| | - Nicolle H Packer
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022; 11:54. [PMID: 36109501 PMCID: PMC9477829 DOI: 10.1038/s41389-022-00431-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExosomes belong to a subpopulation of extracellular vesicles secreted by the dynamic multistep endocytosis process and carry diverse functional molecular cargoes, including proteins, lipids, nucleic acids (DNA, messenger and noncoding RNA), and metabolites to promote intercellular communication. Proteins and noncoding RNA are among the most abundant contents in exosomes; they have biological functions and are selectively packaged into exosomes. Exosomes derived from tumor, stromal and immune cells contribute to the multiple stages of cancer progression as well as resistance to therapy. In this review, we will discuss the biogenesis of exosomes and their roles in cancer development. Since specific contents within exosomes originate from their cells of origin, this property allows exosomes to function as valuable biomarkers. We will also discuss the potential use of exosomes as diagnostic and prognostic biomarkers or predictors for different therapeutic strategies for multiple cancers. Furthermore, the applications of exosomes as direct therapeutic targets or engineered vehicles for drugs are an important field of exosome study. Better understanding of exosome biology may pave the way to promising exosome-based clinical applications.
Collapse
|
9
|
Bunduc S, Gede N, Váncsa S, Lillik V, Kiss S, Juhász MF, Erőss B, Szakács Z, Gheorghe C, Mikó A, Hegyi P. Exosomes as prognostic biomarkers in pancreatic ductal adenocarcinoma-a systematic review and meta-analysis. Transl Res 2022; 244:126-136. [PMID: 35066189 DOI: 10.1016/j.trsl.2022.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
Extensive research is focused on the role of liquid biopsy in pancreatic cancer since reliable diagnostic and follow-up biomarkers represent an unmet need for this highly lethal malignancy. We performed a systematic review and meta-analysis on the prognostic value of exosomal biomarkers in pancreatic ductal adenocarcinoma (PDAC). MEDLINE, Embase, Scopus, Web of Science, and CENTRAL were systematically searched on the 18th of January, 2021 for studies reporting on the differences in overall (OS) and progression-free survival (PFS) in PDAC patients with positive vs negative exosomal biomarkers isolated from blood. The random-effects model estimated pooled multivariate-adjusted (AHR) and univariate hazard ratios (UHRs) with 95% confidence intervals (CIs). Eleven studies comprising 634 patients were eligible for meta-analysis. Detection of positive exosomal biomarkers indicated increased risk of mortality (UHR = 2.81, CI:1.31-6,00, I2 = 88.7%, P < 0.001), and progression (UHR = 3.33, CI: 2.33-4.77, I2 = 0, P = 0.879) across various disease stages. Positive exosomal biomarkers identified preoperatively revealed a higher risk of mortality in resectable stages (UHR = 5.55, CI: 3.24-9.49, I2 = 0, P = 0.898). The risk of mortality in unresectable stages was not significantly increased with positive exosomal biomarkers (UHR = 2.51, CI: 0.55-11.43, I2 = 90.3%, P < 0.001). Detectable exosomal micro ribonucleic acids were associated with a decreased OS (UHR = 4.08, CI: 2.16-7.69, I2 = 46.9%, P = 0.152) across various stages. Our results reflect the potential of exosomal biomarkers for prognosis evaluation in PDAC. The associated heterogeneity reflects the variability of study methods and need for their uniformization before transition to clinical use.
Collapse
Affiliation(s)
- Stefania Bunduc
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; Fundeni Clinical Institute, 022328 Bucharest, Romania; Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085 Budapest, Baross út 22-24, Hungary
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; János Szentágothai Research Center, University of Pécs, 7624 Pécs, Szigeti út 12, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; János Szentágothai Research Center, University of Pécs, 7624 Pécs, Szigeti út 12, Hungary; Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085 Budapest, Baross út 22-24, Hungary
| | - Veronika Lillik
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary
| | - Szabolcs Kiss
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; Doctoral School of Clinical Medicine, University of Szeged, 6720, Hungary
| | - Márk Félix Juhász
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; János Szentágothai Research Center, University of Pécs, 7624 Pécs, Szigeti út 12, Hungary; Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; János Szentágothai Research Center, University of Pécs, 7624 Pécs, Szigeti út 12, Hungary; Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085 Budapest, Baross út 22-24, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; First Department of Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti út 12 Hungary
| | - Cristian Gheorghe
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Alexandra Mikó
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; Department of Medical Genetics, Medical School, University of Pécs, 7623, Pécs, József Attila út 7
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Szigeti ú;t 12, Hungary; János Szentágothai Research Center, University of Pécs, 7624 Pécs, Szigeti út 12, Hungary; Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085 Budapest, Baross út 22-24, Hungary.
| |
Collapse
|
10
|
Chang CH, Pauklin S. Extracellular vesicles in pancreatic cancer progression and therapies. Cell Death Dis 2021; 12:973. [PMID: 34671031 PMCID: PMC8528925 DOI: 10.1038/s41419-021-04258-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
11
|
Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021; 13:cancers13194844. [PMID: 34638330 PMCID: PMC8508300 DOI: 10.3390/cancers13194844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with cellular components of their microenvironment, but also with distant metastatic niches to facilitate tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis, prognosis, and treatment is the focus of this review. Abstract Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.
Collapse
|
12
|
Retrospective Cohort Study of Caveolin-1 Expression as Prognostic Factor in Unresectable Locally Advanced or Metastatic Pancreatic Cancer Patients. ACTA ACUST UNITED AC 2021; 28:3525-3536. [PMID: 34590611 PMCID: PMC8482160 DOI: 10.3390/curroncol28050303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022]
Abstract
Caveolin-1 (Cav-1) plays a key role in various neoplastic diseases and is upregulated in different cancers, including pancreatic ductal adenocarcinoma (PDAC). Furthermore, Cav-1 is critical for the uptake of albumin as well as nab-paclitaxel in PDAC cells. Here, we investigated the prognostic impact of Cav-1 expression in a cohort of 39 metastatic PDAC patients treated with different first-line chemotherapy regimens. We also assessed the predictive value of Cav-1 in patients treated with gemcitabine and nab-paclitaxel. Cav-1 expression was evaluated by immunohistochemistry staining in neoplastic and stromal cells, using metastatic sites or primary tumor tissue specimens. Higher levels of Cav-1 expression were associated with significantly worse overall survival (OS) and progression-free survival (PFS). No differences in OS were found between patients treated with gemcitabine + nab-paclitaxel vs. other chemotherapy options. Multivariate analysis for OS and PFS confirmed the independent prognostic role of Cav-1 expression. Our study evidenced a negative prognostic role of Cav-1 in patients affected by metastatic/locally advanced unresectable PDAC. Moreover, Cav-1 expression seems not to predict different response rates to different types of first-line treatment. Future prospective trials will be necessary to confirm the prognostic role of Cav-1 and explore Cav-1 specific inhibitors as a therapeutic option for advanced PDAC patients.
Collapse
|
13
|
Špilak A, Brachner A, Kegler U, Neuhaus W, Noehammer C. Implications and pitfalls for cancer diagnostics exploiting extracellular vesicles. Adv Drug Deliv Rev 2021; 175:113819. [PMID: 34087328 DOI: 10.1016/j.addr.2021.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Early detection of cancer in order to facilitate timely therapeutic interventions is an unsolved problem in today's clinical diagnostics. Tumors are detected so far mostly after pathological symptoms have emerged (usually already in progressed disease states), within preventive screenings, or occasionally as incidental finding. The emergence of extracellular vesicle (EV) analytics in combination with liquid biopsy sampling opened a plethora of new possibilities for the detection of tumors (and other diseases). This review gives an overview of the diversity of currently known EV species and the relevant cargo molecules representing potential biomarkers to detect, identify and characterize tumor cells. A number of molecules reported in recent years to be valuable targets for different aspects of cancer diagnostics, are presented. Furthermore, we discuss (technical) challenges and pitfalls related to the various potential applications (screening, diagnosis, prognosis, monitoring) of liquid biopsy based EV analytics, and give an outlook to possible future directions of this emerging field in oncology.
Collapse
Affiliation(s)
- Ana Špilak
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Andreas Brachner
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Ulrike Kegler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Christa Noehammer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria.
| |
Collapse
|
14
|
Li J, Chen X, Zhu L, Lao Z, Zhou T, Zang L, Ge W, Jiang M, Xu J, Cao Y, Du S, Yu Y, Fan G, Wang H. SOX9 is a critical regulator of TSPAN8-mediated metastasis in pancreatic cancer. Oncogene 2021; 40:4884-4893. [PMID: 34163029 PMCID: PMC8321899 DOI: 10.1038/s41388-021-01864-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest cancer mainly owing to its proclivity to early metastasis and the lack of effective targeted therapeutic drugs. Hence, understanding the molecular mechanisms underlying early invasion and metastasis by PDAC is imperative for improving patient outcomes. The present study identified that upregulation of TSPAN8 expression in PDAC facilitates metastasis in vivo and in vitro. We found SOX9 as a key transcriptional regulator of TSPAN8 expression in response to EGF stimulation. SOX9 modulation was sufficient to positively regulate endogenous expression of TSPAN8, with concomitant in vitro phenotypic changes such as loss of cell-matrix adherence and increased invasion. Moreover, increased SOX9 and TSPAN8 levels were shown to correlate in human pancreatic cancer specimens and downregulated in vitro by EGFR tyrosine kinase inhibitors. High expression of SOX9 and TSPAN8 has been associated with tumor stage, poor prognosis and poor patient survival in PDAC. In conclusion, this study highlights the importance of the EGF-SOX9-TSPAN8 signaling cascade in the control of PDAC invasion and implies that TSPAN8 may be a promising novel therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Junjian Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Chen
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Centers for Disease Control and Prevention, Shenzhen, China
| | - Liqun Zhu
- Department of Oncology, Liyang People's Hospital, Liyang, China
| | - Zhenghong Lao
- Department of Oncology, Deqing People's Hospital, Huzhou, China
| | - Tianhao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Zang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Jiang
- Department of Medical Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital East Campus, Shanghai, China
| | - Jingxuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqian Du
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yu
- Shanghai Experimental School, Shanghai, China
| | - Guangjian Fan
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
16
|
Goričar K, Dolžan V, Lenassi M. Extracellular Vesicles: A Novel Tool Facilitating Personalized Medicine and Pharmacogenomics in Oncology. Front Pharmacol 2021; 12:671298. [PMID: 33995103 PMCID: PMC8120271 DOI: 10.3389/fphar.2021.671298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Biomarkers that can guide cancer therapy based on patients' individual cancer molecular signature can enable a more effective treatment with fewer adverse events. Data on actionable somatic mutations and germline genetic variants, studied by personalized medicine and pharmacogenomics, can be obtained from tumor tissue or blood samples. As tissue biopsy cannot reflect the heterogeneity of the tumor or its temporal changes, liquid biopsy is a promising alternative approach. In recent years, extracellular vesicles (EVs) have emerged as a potential source of biomarkers in liquid biopsy. EVs are a heterogeneous population of membrane bound particles, which are released from all cells and accumulate into body fluids. They contain various proteins, lipids, nucleic acids (miRNA, mRNA, and DNA) and metabolites. In cancer, EV biomolecular composition and concentration are changed. Tumor EVs can promote the remodeling of the tumor microenvironment and pre-metastatic niche formation, and contribute to transfer of oncogenic potential or drug resistance during chemotherapy. This makes them a promising source of minimally invasive biomarkers. A limited number of clinical studies investigated EVs to monitor cancer progression, tumor evolution or drug resistance and several putative EV-bound protein and RNA biomarkers were identified. This review is focused on EVs as novel biomarker source for personalized medicine and pharmacogenomics in oncology. As several pharmacogenes and genes associated with targeted therapy, chemotherapy or hormonal therapy were already detected in EVs, they might be used for fine-tuning personalized cancer treatment.
Collapse
Affiliation(s)
| | | | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Oliveira C, Calmeiro J, Carrascal MA, Falcão A, Gomes C, Miguel Neves B, Teresa Cruz M. Exosomes as new therapeutic vectors for pancreatic cancer treatment. Eur J Pharm Biopharm 2021; 161:4-14. [PMID: 33561524 DOI: 10.1016/j.ejpb.2021.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.
Collapse
Affiliation(s)
- Constança Oliveira
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Calmeiro
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Mylène A Carrascal
- Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal; Tecnimede Group, 2710-089 Sintra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, 300-504 Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
18
|
Identification of an extracellular vesicle-related gene signature in the prediction of pancreatic cancer clinical prognosis. Biosci Rep 2020; 40:226923. [PMID: 33169793 PMCID: PMC7724614 DOI: 10.1042/bsr20201087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Although extracellular vesicles (EVs) in body fluid have been considered to be ideal biomarkers for cancer diagnosis and prognosis, it is still difficult to distinguish EVs derived from tumor tissue and normal tissue. Therefore, the prognostic value of tumor-specific EVs was evaluated through related molecules in pancreatic tumor tissue. NA sequencing data of pancreatic adenocarcinoma (PAAD) were acquired from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). EV-related genes in pancreatic cancer were obtained from exoRBase. Protein–protein interaction (PPI) network analysis was used to identify modules related to clinical stage. CIBERSORT was used to assess the abundance of immune and non-immune cells in the tumor microenvironment. A total of 12 PPI modules were identified, and the 3-PPI-MOD was identified based on the randomForest package. The genes of this model are involved in DNA damage and repair and cell membrane-related pathways. The independent external verification cohorts showed that the 3-PPI-MOD can significantly classify patient prognosis. Moreover, compared with the model constructed by pure gene expression, the 3-PPI-MOD showed better prognostic value. The expression of genes in the 3-PPI-MOD had a significant positive correlation with immune cells. Genes related to the hypoxia pathway were significantly enriched in the high-risk tumors predicted by the 3-PPI-MOD. External databases were used to verify the gene expression in the 3-PPI-MOD. The 3-PPI-MOD had satisfactory predictive performance and could be used as a prognostic predictive biomarker for pancreatic cancer.
Collapse
|
19
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
20
|
Extracellular Vesicles in Diagnosis and Treatment of Pancreatic Cancer: Current State and Future Perspectives. Cancers (Basel) 2020; 12:cancers12061530. [PMID: 32532129 PMCID: PMC7352217 DOI: 10.3390/cancers12061530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest diagnoses a patient can receive. One of the reasons for this lethality is that this malignancy is often detected very late due to a lack of symptoms during the early stages. In addition to the lack of symptoms, we currently do not have a reliable biomarker for screening. Carbohydrate antigen (CA) 19-9 has a sensitivity between 79% and 84% and a specificity of 82–90%, making it unreliable for early detection. Recently, there have been numerous studies on the use of extracellular vesicles (EVs) to detect pancreas cancer. This field has been rapidly expanding, with new methods and biomarkers being introduced regularly. This review provides a systematic update on the commonly used and promising methods used in the detection of EVs, biomarkers associated with EVs for early detection and prognosis, as well as studies looking at using EVs as therapeutics. The review ends with remarks about areas to focus on using EVs going forward.
Collapse
|
21
|
Makler A, Asghar W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev Mol Diagn 2020; 20:387-400. [PMID: 32067543 PMCID: PMC7071954 DOI: 10.1080/14737159.2020.1731308] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Introduction: In recent years, extensive research has been conducted on using exosomes as biomarkers for cancer detection. Exosomes are 40-150 nm-sized extracellular vesicles released by all cell types, including tumor cells. Exosomes are stable in body fluids due to their lipid bilayer member and often contain DNA, RNA, and proteins. These exosomes can be harvested from blood, plasma, serum, urine, or saliva and analyzed for tumor-relevant mutations. Thus, exosomes provide an alternative to current methods of tumor detection.Areas covered: This review discusses the use of exosomal diagnostics in various tumor types as well as their examination in various clinical trials. The authors also discuss the limitations of exosome-based diagnostics in the clinical setting and provide examples of several studies in which the development and usage of microfluidic chips and nano-sensing devices have been utilized to address these obstacles.Expert commentary: In recent years, exosomes and their contents have exhibited potential as novel tumor detection markers despite the labor involved in their harvest and isolation. Despite this, much work is being done to optimize exosome capture and analysis. Thus, their roles as biomarkers in the clinical setting appear promising.
Collapse
Affiliation(s)
- Amy Makler
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
- Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
22
|
Kok VC, Yu CC. Cancer-Derived Exosomes: Their Role in Cancer Biology and Biomarker Development. Int J Nanomedicine 2020; 15:8019-8036. [PMID: 33116515 PMCID: PMC7585279 DOI: 10.2147/ijn.s272378] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Exosomes are a subset of tiny extracellular vesicles manufactured by all cells and are present in all body fluids. They are produced actively in tumor cells, which are released and utilized to facilitate tumor growth. Their characteristics enable them to assist major cancer hallmarks, leveraged by cancer cells in fostering cancer growth and spread while implementing ways to escape elimination from the host environment. This review updates on the latest progress on the roles of cancer-derived exosomes, of 30-100 nm in size, in deregulating paracrine trafficking in the tumor microenvironment and circulation. Thus, exosomes are being exploited in diagnostic biomarker development, with its potential in clinical applications as therapeutic targets utilized in exosome-based nanoparticle drug delivery strategies for cancer therapy. Ongoing studies were retrieved from PubMed® and Scopus database and ClinicalTrials.gov registry for review, highlighting how cancer cells from entirely different cell lines rely on genetic information carried by their exosomes for homotypic and heterotypic intercellular communications in the microenvironment to favor proliferation and invasion, while establishing a pre-metastatic niche in welcoming cancer cells' arrival. We will elaborate on the trafficking of tumor-derived exosomes in fostering cancer proliferation, invasion, and metastasis in hematopoietic (leukemia and myeloma), epithelial (breast cancer), and mesenchymal (soft tissue sarcoma and osteosarcoma) cancers. Cancer-derived exosomal trafficking is observed in several types of liquid or solid tumors, confirming their role as cancer hallmark enabler. Their enriched genetic signals arising from their characteristic DNA, RNA, microRNA, and lncRNA, along with specific gene expression profiles, protein, or lipid composition carried by the exosomal cargo shed into blood, saliva, urine, ascites, and cervicovaginal lavage, are being studied as a diagnostic, prognostic, or predictive cancer biomarker. We reveal the latest research efforts in exploiting the use of nanoparticles to improve the overall cancer diagnostic capability in the clinic.
Collapse
Affiliation(s)
- Victor C Kok
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Correspondence: Victor C Kok Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, 117 Shatien Road, Shalu, Taichung43303, TaiwanTel +886 4 2662 5111 Ext 2263Fax +886 4 2665 5050 Email
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
23
|
Vasconcelos MH, Caires HR, Ābols A, Xavier CPR, Linē A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat 2019; 47:100647. [PMID: 31704541 DOI: 10.1016/j.drup.2019.100647] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
Abstract
Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-resistant phenotypes to other cancer cells, modulating the anti-tumor immune response, as well as contributing to remodeling the tumor microenvironment and formation of pre-metastatic niches. These findings have raised the idea that cancer-derived EVs may serve as analytes in liquid biopsies for real-time monitoring of tumor burden and drug resistance. In this review, we have summarized recent longitudinal clinical studies describing promising EV-associated biomarkers for cancer progression and tracking cancer evolution as well as pre-clinical and clinical evidence on the relevance of EVs for monitoring the emergence or progression of drug resistance. Furthermore, we outlined the state-of-the-art in the development and commercialization of EV-based biomarkers and discussed the scientific and technological challenges that need to be met in order to translate EV research into clinically applicable tools for precision medicine.
Collapse
Affiliation(s)
- M Helena Vasconcelos
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Hugo R Caires
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Artūrs Ābols
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Cristina P R Xavier
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Faculty of Biology, University of Latvia, Riga, Latvia.
| |
Collapse
|