1
|
Wang K, Li Z, Egini O, Wadgaonkar R, Jiang XC, Chen Y. Atomic force microscopy reveals involvement of the cell envelope in biomechanical properties of sickle erythrocytes. BMC Biol 2023; 21:31. [PMID: 36782158 PMCID: PMC9926656 DOI: 10.1186/s12915-023-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Intracellular hemoglobin polymerization has been supposed to be the major determinant for the elevated rigidity/stiffness of sickle erythrocytes from sickle cell anemia (SCA) patients. However, the contribution of the cell envelope remains unclear. RESULTS In this study, using atomic force microscopy (AFM), we compared the normal and sickled erythrocyte surfaces for stiffness and topography. AFM detected that sickle cells had a rougher surface and were stiffer than normal erythrocytes and that sickle cell ghosts had a rougher surface (for both outer and inner surfaces) and were thicker than normal ghosts, the latter implying a higher membrane-associated hemoglobin content/layer in the sickle cell envelope. Compared to healthy subjects, the SCA patients had lower plasma lipoprotein levels. AFM further revealed that a mild concentration of methyl-β-cyclodextrin (MβCD, a putative cholesterol-depleting reagent) could induce an increase in roughness of erythrocytes/ghosts and a decrease in thickness of ghosts for both normal and sickle cells, implying that MβCD can alter the cell envelope from outside (cholesterol in the plasma membrane) to inside (membrane-associated hemoglobin). More importantly, MβCD also caused a more significant decrease in stiffness of sickle cells than that of normal erythrocytes. CONCLUSIONS The data reveal that besides the cytosolic hemoglobin fibers, the cell envelope containing the membrane-associated hemoglobin also is involved in the biomechanical properties (e.g., stiffness and shape maintenance) of sickle erythrocytes.
Collapse
Affiliation(s)
- Kun Wang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Zhiqiang Li
- Department of Cell Biology, SUNY Health Sciences University, State University of New York, Brooklyn, NY, 11203, USA
| | - Ogechukwu Egini
- Division of Hematology and Oncology, Department of Medicine, SUNY Health Sciences University, State University of New York, Brooklyn, NY, 11203, USA
| | - Raj Wadgaonkar
- Department of Cell Biology, SUNY Health Sciences University, State University of New York, Brooklyn, NY, 11203, USA
- VA Medical Center, Brooklyn, NY11208, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Health Sciences University, State University of New York, Brooklyn, NY, 11203, USA.
- VA Medical Center, Brooklyn, NY11208, USA.
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.
- Department of Cell Biology, SUNY Health Sciences University, State University of New York, Brooklyn, NY, 11203, USA.
| |
Collapse
|
2
|
Guimarães-Nobre CC, Mendonça-Reis E, Teixeira-Alves LR, Miranda-Alves L, Berto-Junior C. ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes. Cell Biochem Biophys 2022; 80:711-721. [PMID: 36175813 DOI: 10.1007/s12013-022-01096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
Angiotensin II (Ang II) regulates blood volume and stimulates erythropoiesis through AT1 (ATR1) and AT2 (ATR2) receptors, found in multiple tissues, including erythrocytes. Sickle cell disease (SCD) patients present altered Ang II levels. Hemoglobin S polymerization, deformability and phosphatidylserine translocation are important features of mature erythrocytes, therefore, our hypothesis is Ang II affects these parameters and, if it does, what would be the influence of AT1R and AT2R on these effects. A polymerization assay (PA), deformability, and annexin V binding were performed in SCD erythrocytes samples adding Ang II, ATR1 antagonist (losartan or eprosartan), and ATR2 antagonist (PD123319). Through the PA test, we observed a dose-dependent polymerization inhibition effect when comparing Ang II to control. Losartan did not affect the level or the rate of Ang II inhibition, while PD123319 showed an increased level of protection against polymerization, and eprosartan brought levels back to control. Ang II was able to reduce the translocation of phosphatidylserine from the inner to the outer leaflet, a marker of eryptosis, in the presence of PD123319. Also, ATR1 showed a positive effect increasing deformability. Our data shows that ATR1 is important for maintenance of erythrocyte physiological function in SCD and for prolonging its life.
Collapse
Affiliation(s)
- Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental- LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratório de Endocrinologia Experimental- LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|