1
|
Fakhraei R, Fell DB, El-Chaâr D, Thampi N, Sander B, Brown KA, Crowcroft N, Bolotin S, Barrett J, Darling EK, Fittipaldi N, Lamagni T, McGeer A, Murti M, Sadarangani M, Schwartz KL, Yasseen A, Tunis M, Petrcich W, Wilson K. Burden of infant group B Streptococcus disease and impact of maternal screening and antibiotic prophylaxis in Ontario, Canada: a population-based cohort study. LANCET REGIONAL HEALTH. AMERICAS 2024; 39:100914. [PMID: 39507368 PMCID: PMC11539648 DOI: 10.1016/j.lana.2024.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Background Group B Streptococcus (GBS) significantly contributes to neonatal sepsis and meningitis, with varying disease rates reported globally and limited population-based data. We estimated infant GBS disease burden in Ontario, Canada and assessed the association of maternal GBS screening (35-37 weeks' gestation) and intrapartum antibiotic prophylaxis (IAP) provision with infant disease rates. Methods Our population-based cohort study included pregnant individuals and their offspring from April 2012 to March 2018, utilising the provincial birth registry linked to health administrative data. GBS cases were ascertained through culture results and diagnostic codes. We calculated incidence rates for early-onset disease (EOD: 0-6 days), late-onset disease (LOD: 7-89 days), and ultra-LOD (ULOD: 90-365 days). Adjusted incidence rate ratios (aIRR) were derived via log-binomial regression to compare infant GBS rates according to screening and IAP-receipt. Findings Among 776,148 liveborn infants, we identified 803 with GBS, with multiples exhibiting a threefold incidence increase. Incidence rates of EOD, LOD and ULOD were 0.49, 0.46 and 0.07 per 1000 livebirths, respectively. Of eligible pregnancies, 94% were screened; 23% screened positive, and 81% of them received IAP. Nearly 12% of term EOD infants had mothers who missed IAP despite screening positive. Maternal screening was associated with lower rates of any infant GBS disease (aIRR: 0.60; 95% CI: 0.45, 0.80). Among screen-positive births, IAP-receipt was associated with reduced rates of EOD (aIRR: 0.72, 95% CI: 0.48, 1.29) and LOD/ULOD (aIRR: 0.69; 95% CI: 0.46, 1.05), but confidence intervals included 1.0. Interpretation Our study, the largest Canadian investigation into infant GBS disease, highlights both widespread adoption and ongoing challenges of the current prevention strategy. Funding Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Romina Fakhraei
- University of Ottawa, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Canada
| | - Deshayne B. Fell
- University of Ottawa, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Canada
| | - Darine El-Chaâr
- University of Ottawa, Canada
- Ottawa Hospital Research Institute, Canada
| | - Nisha Thampi
- University of Ottawa, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Canada
| | - Beate Sander
- University of Toronto, Canada
- University Health Network, Canada
- ICES, Ontario, Canada
| | - Kevin Antoine Brown
- University of Toronto, Canada
- ICES, Ontario, Canada
- Public Health Ontario, Canada
| | | | - Shelly Bolotin
- University of Toronto, Canada
- Public Health Ontario, Canada
| | | | | | | | | | | | | | - Manish Sadarangani
- University of British Columbia, Canada
- BC Children’s Hospital Research Institute, Canada
| | - Kevin L. Schwartz
- University of Toronto, Canada
- ICES, Ontario, Canada
- Public Health Ontario, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Canada
| | - Abdool Yasseen
- University of Toronto, Canada
- Public Health Ontario, Canada
| | | | | | | |
Collapse
|
2
|
Ding YX, Wang SN, Cui H, Jiang LN. Effect of intestinal microecology on postnatal weight gain in very preterm infants in intensive care units. Gut Pathog 2021; 13:49. [PMID: 34334130 PMCID: PMC8327448 DOI: 10.1186/s13099-021-00445-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To study the effect of intestinal microecology on postnatal weight gain of very preterm infants in neonatal intensive care unit (NICU). METHODS Very preterm infants who met the inclusion criteria were enrolled. The subjects were divided into the extrauterine growth retardation (EUGR) group(defined as a body weight less than the 10th percentile of the corresponding gestational age or a weight loss between birth and a given time of > 2SD were considered EUGR) and normal growth group, and the growth was evaluated at 2 and 4 weeks after birth. Meanwhile, the stool samples were taken to perform16S ribosomal RNA (rRNA) high -throughput 16S rRNA sequencing of the intestinal microflora was performed on stool samples. RESULTS A total of 22 infants were included. There was no significant difference in the alpha diversity indexes indices between the two groups at 2 weeks or 4 weeks after birth. The beta diversity analysis showed that the two groups had similar principal components of the intestinal microflora were similar between the two groups. Linear discriminant analysis (LDA) effect size (LEfSe) showed that 2 weeks after birth, the bacteria with an absolute LDA score (log10) higher than 4 included Streptococcaceae, Streptococcus, Bacteroidetes, Bacteroidales and Stenotrophomonas in the EUGR group and Enterococcaceae and Enterococcus in the control group. At the 4th week after birth, the bacteria with an absolute LDA score (log10) higher than 3 in the EUGR group includedwere Clostriaceae, Eubacteriaceae and Eubacterium. TheBy comparing the composition of the microbial community composition comparison showed, significant differences were found in the principal components of Enterococcus and Streptococcus on the family and genus levels at 2 weeks after birth. No Bifidobacterium was found in either group at 4 weeks after birth. CONCLUSION Intestinal microecology is different between infants with EUGR and those with normal growth. The diversity and richness of the intestinal microflora in preterm infants at the NICU are significantly insufficient and change dynamically with time, and the establishment of intestinal homeostasis is obviously delayed.
Collapse
Affiliation(s)
- Ying-Xue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Shou-Ni Wang
- Department of E.N.T, Yantai Shan Hospital, Yantai, 264001, Shandong, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li-Na Jiang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
3
|
Hahn BA, de Gier B, van Kassel MN, Bijlsma MW, van Leeuwen E, Wouters MGAJ, van der Ende A, van de Beek D, Wallinga J, Hahné SJM, Jan van Hoek A. Cost-effectiveness of maternal immunization against neonatal invasive Group B Streptococcus in the Netherlands. Vaccine 2021; 39:2876-2885. [PMID: 33895018 DOI: 10.1016/j.vaccine.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neonatal invasive Group B Streptococcus (GBS) infection causes considerable disease burden in the Netherlands. Intrapartum antibiotic prophylaxis (IAP) prevents early-onset disease (EOD), but has no effect on late-onset disease (LOD). A potential maternal GBS vaccine could prevent both EOD and LOD by conferring immunity in neonates. OBJECTIVE Explore under which circumstances maternal vaccination against GBS would be cost-effective as an addition to, or replacement for the current risk factor-based IAP prevention strategy in the Netherlands. METHODS We assessed the maximum cost-effective price per dose of a trivalent (serotypes Ia, Ib, and III) and hexavalent (additional serotypes II, IV, and V) GBS vaccine in addition to, or as a replacement for IAP. To project the prevented costs and disease burden, a decision tree model was developed to reflect neonatal GBS disease and long-term health outcomes among a cohort based on 169,836 live births in the Netherlands in 2017. RESULTS Under base-case conditions, maternal immunization with a trivalent vaccine would gain 186 QALYs and prevent more than €3.1 million in health care costs when implemented in addition to IAP. Immunization implemented as a replacement for IAP would gain 88 QALYs compared to the current prevention strategy, prevent €1.5 million in health care costs, and avoid potentially ~ 30,000 IAP administrations. The base-case results correspond to a maximum price of €58 per dose (vaccine + administration costs; using a threshold of €20,000/QALY). Expanding the serotype coverage to a hexavalent vaccine would only have a limited additional impact on the cost-effectiveness in the Netherlands. CONCLUSIONS A maternal GBS vaccine could be cost-effective when implemented in addition to the current risk factor-based IAP prevention strategy in the Netherlands. Discontinuation of IAP would save costs and prevent antibiotic use, however, is projected to lead to a lower health gain compared to vaccination in addition to IAP.
Collapse
Affiliation(s)
- Brett A Hahn
- Athena Institute, VU Amsterdam, the Netherlands; National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Brechje de Gier
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands.
| | - Merel N van Kassel
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands
| | - Merijn W Bijlsma
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands
| | | | - Maurice G A J Wouters
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands; Amsterdam UMC, Department of Obstetrics and Gynaecology, Amsterdam, The Netherlands
| | - Arie van der Ende
- Amsterdam UMC, Department of Medical Microbiology, Infection and Immunity, and Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, the Netherlands
| | - Jacco Wallinga
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Susan J M Hahné
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| | - Albert Jan van Hoek
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (Cib), Bilthoven, the Netherlands
| |
Collapse
|
4
|
Reuschel E, Toelge M, Haeusler S, Deml L, Seelbach-Goebel B, Solano ME. Perinatal Gram-Positive Bacteria Exposure Elicits Distinct Cytokine Responses In Vitro. Int J Mol Sci 2020; 22:E332. [PMID: 33396944 PMCID: PMC7795300 DOI: 10.3390/ijms22010332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
During pregnancy, infections caused by the gram-positive bacteria Enterococcus faecalis (E. faecalis), Streptococcus agalacticae (S. agalacticae), and Staphylococcus aureus (S. aureus) are major reasons for preterm labor, neonatal prematurity, meningitis, or sepsis. Here, we propose cytokine responses to bacterial infections by the immature perinatal immune system as central players in the pathogenesis of preterm birth and neonatal sepsis. We aimed to close the gap in knowledge about such cytokine responses by stimulating freshly isolated umbilical blood mononuclear cells (UBMC) with lysates of E. faecalis, S. agalacticae, and S. aureus collected from pregnant women in preterm labor. Bacterial lysates and, principally, S. aureus and S. agalacticae distinctly triggered most of the eleven inflammatory, anti-inflammatory, TH1/TH2 cytokines, and chemokines quantified in UBMC culture media. Chemokines depicted the most robust induction. Among them, MIP-1β was further enhanced in UBMC from female compered to male newborn infants. Due to its stability and high levels, we investigated the diagnostic value of IL-8. IL-8 was critically upregulated in cord blood of preterm neonates suffering from infections compared to gestational age-matched controls. Our results provide novel clues about perinatal immunity, underscoring a potential value of IL-8 for the timely detection of infections and suggesting that MIP-1β constitutes an early determinant of sex-specific immunity, which may contribute, e.g., to male's vulnerability to preterm birth.
Collapse
Affiliation(s)
- Edith Reuschel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (L.D.)
| | - Sebastian Haeusler
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Ludwig Deml
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (L.D.)
| | - Birgit Seelbach-Goebel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, 93049 Regensburg, Germany; (S.H.); (B.S.-G.)
| | - Maria Emilia Solano
- Department of Obstetrics and Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Li P, Wei Y, Li G, Cheng H, Xu Z, Yu Z, Deng Q, Shi Y. Comparison of antimicrobial efficacy of eravacycline and tigecycline against clinical isolates of Streptococcus agalactiae in China: In vitro activity, heteroresistance, and cross-resistance. Microb Pathog 2020; 149:104502. [PMID: 32947016 DOI: 10.1016/j.micpath.2020.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
AIMS The aims of this study were to compare the antimicrobial efficacy of Eravacycline (Erava) versus tigecycline (Tig) in vitro against clinical isolates of S. agalactiae from China and further to evaluate the heteroresistance risk and resistance mechanisms of Erava. METHODS 162 clinical isolates of S. agalactiae were collected retrospectively and the minimal inhibitory concentrations (MICs) of Erava and Tig were determined by agar dilution. Moreover, Tetracycline (Tet) specific resistance genes, genetic mutations in Tet target sites, and sequence types (ST) profiles of clinical isolates of S. agalactiae were investigated with polymerase chain reaction (PCR) experiments. The heteroresistance frequency of Erava and Tig in S. agalactiae was analyzed by population analysis profiling. Furthermore, the resistance mechanisms of both Erava and Tig were investigated in antibiotic-induced resistant S. agalactiae isolates in vitro. RESULTS The MIC values of Erava and Tig were shown with ≤0.25 mg/L and ≤0.5 mg/L, respectively, against clinical S. agalactiae isolates, including that harboring the Tet-specific resistance genes tet(K), tet(M), or tet(O). The heteroresistance frequency of Tig among the clinical isolates of S. agalactiae was 1.84% (3/162), whereas no positive Erava heteroresistance was found. The enhanced MIC values of both Erava and Tig in the heteroresistance-derivative S. agalactiae clones could be reversed by the efflux pump inhibition experiments. Genetic mutations affecting 30S ribosome units (16SrRNA copies or 30S ribosome protein S10) could result in the cross resistance toward Erava and Tig in the antibiotic-induced resistant S. agalactiae isolates in vitro. CONCLUSIONS Erava MIC values were nearly half of that of Tig against the clinical isolates of S. agalactiae from China and genetic mutations in the 30S ribosome units of Tet target sites (16SrRNA copies or 30S ribosome protein S10) participated in the resistance evolution of both Erava and Tig under the antibiotic pressure.
Collapse
Affiliation(s)
- Peiyu Li
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Ying Wei
- Heilongjiang Medical Service Management Evaluation Center, Harbin, Heilongjiang, 150031, China
| | - Guiqiu Li
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; The Clinical Microbiology Lab of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150031, China
| | - Hang Cheng
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhichao Xu
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Qiwen Deng
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Yiyi Shi
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital of Guangdong Medical University, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| |
Collapse
|
7
|
Chambers SA, Moore RE, Craft KM, Thomas HC, Das R, Manning SD, Codreanu SG, Sherrod SD, Aronoff DM, McLean JA, Gaddy JA, Townsend SD. A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim. mBio 2020; 11:e00076-20. [PMID: 32184236 PMCID: PMC7078465 DOI: 10.1128/mbio.00076-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 01/21/2023] Open
Abstract
Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs' mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.
Collapse
Affiliation(s)
| | - Rebecca E Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Kelly M Craft
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Harrison C Thomas
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Rishub Das
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Nashville, Tennessee, USA
| | - Stacy D Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Nashville, Tennessee, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|