1
|
Shibata H, Ono F, Sato Y, Ohto K, Nakano N, Imamura M, Horiuchi M, Tobiume M, Hagiwara K. Lack of Evidence for Transmission of Atypical H-Type Bovine Spongiform Encephalopathy Prions (H-BSE Prions) by Intracranial and Oral Challenges to Nonhuman Primates. Microbiol Immunol 2025; 69:25-34. [PMID: 39523908 DOI: 10.1111/1348-0421.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease in cattle caused by classical-type (C-), L-type (L-), or H-type (H-) BSE prions. While C-BSE prions are zoonotic agents responsible for variant Creutzfeldt-Jakob disease, L- and H-BSE prions are believed not to be connected to human prion diseases. However, L-BSE prions have been shown to transmit to cynomolgus monkeys (Macaca fascicularis), suggesting they may have zoonotic potential. In the present study, we examined whether H-BSE prions are transmissible to cynomolgus monkeys. The monkeys were injected intracranially (n = 2) or given orally (n = 2) with brain homogenates from a cow infected with H-BSE prions. After asymptomatic observation periods of 4-6 years, the monkeys were euthanized for autopsy. Histological examination of the brain did not reveal any pathological changes. Immunohistochemical and Western blot analyses did not detect disease-associated forms of prion protein (PrPSc) in the brain, peripheral neurons, or lymphatic tissues. The unsuccessful transmission indicates an effective barrier against the transmission of cattle H-BSE prions to cynomolgus monkeys. Based on the results obtained in this nonhuman primate model, we estimated that the potential transmission of H-BSE prions to humans is substantially lower than C- and L-BSE prions.
Collapse
Affiliation(s)
- Hiroaki Shibata
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Fumiko Ono
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Keiko Ohto
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - Nozomi Nakano
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - Morikazu Imamura
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
2
|
Zhang J, Wu M, Ma Z, Zhang Y, Cao H. Species-specific identification of donkey-hide gelatin and its adulterants using marker peptides. PLoS One 2022; 17:e0273021. [PMID: 35960756 PMCID: PMC9374224 DOI: 10.1371/journal.pone.0273021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Donkey-hide gelatin is an important traditional Chinese medicine made from donkey skin. Despite decades of effort, identifying the animal materials (donkeys, horses, cattle and pigs) in donkey-hide gelatin remains challenging. In our study, we aimed to identify marker peptides of donkey-hide gelatin and its adulterants and develop a liquid chromatography–tandem mass spectrometry method to identify them. Theoretical marker peptides of four animals (donkeys, horses, cattle and pigs) were predicted and verified by proteomic experiments, and 12 species-specific marker peptides from donkey-hide gelatin and its adulterants were identified. One marker peptide for each gelatin was selected to develop the liquid chromatography–tandem mass spectrometry method. The applicability of the method was evaluated by investigating homemade mixed gelatin samples and commercial donkey-hide gelatin products. Using the liquid chromatography–tandem mass spectrometry method, the addition of cattle-hide gelatin and pig-hide gelatin to donkey-hide gelatin could be detected at a level of 0.1%. Horse-hide gelatin was detected when added at a level of 0.5%. Among 18 batches of donkey-hide gelatin products, nine were identified as authentic, and eight of the remaining samples were suspected to be adulterated with horse materials. These results provide both a practical method to control the quality of donkey-hide gelatin and a good reference for quality evaluations of other medicinal materials and foods containing protein components.
Collapse
Affiliation(s)
- Jinju Zhang
- College of Pharmacy, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (2021B1212040007), Guangzhou, Guangdong, China
| | - Menghua Wu
- College of Pharmacy, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (2021B1212040007), Guangzhou, Guangdong, China
| | - Zhiguo Ma
- College of Pharmacy, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (2021B1212040007), Guangzhou, Guangdong, China
| | - Ying Zhang
- College of Pharmacy, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (2021B1212040007), Guangzhou, Guangdong, China
- * E-mail: (YZ); (HC)
| | - Hui Cao
- College of Pharmacy, Research Center for Traditional Chinese Medicine of Lingnan (Southern China), National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (2021B1212040007), Guangzhou, Guangdong, China
- * E-mail: (YZ); (HC)
| |
Collapse
|
3
|
Singh A, Mallika TN, Gorain B, Yadav AK, Tiwari S, Flora S, Shukla R, Kesharwani P. Quantum dot: Heralding a brighter future in neurodegenerative disorders. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
First Report of the Potential Bovine Spongiform Encephalopathy (BSE)-Related Somatic Mutation E211K of the Prion Protein Gene ( PRNP) in Cattle. Int J Mol Sci 2020; 21:ijms21124246. [PMID: 32549191 PMCID: PMC7352198 DOI: 10.3390/ijms21124246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease characterized by spongiform degeneration and astrocytosis in the brain. Unlike classical BSE, which is caused by prion-disease-contaminated meat and bone meal, the cause of atypical BSE has not been determined. Since previous studies have reported that the somatic mutation in the human prion protein gene (PRNP) has been linked to human prion disease, the somatic mutation of the PRNP gene was presumed to be one cause of prion disease. However, to the best of our knowledge, the somatic mutation of this gene in cattle has not been investigated to date. We investigated somatic mutations in a total of 58 samples, including peripheral blood; brain tissue including the medulla oblongata, cerebellum, cortex, and thalamus; and skin tissue in 20 individuals from each breed using pyrosequencing. In addition, we estimated the deleterious effect of the K211 somatic mutation on bovine prion protein by in silico evaluation tools, including PolyPhen-2 and PANTHER. We found a high rate of K211 somatic mutations of the bovine PRNP gene in the medulla oblongata of three Holsteins (10% ± 4.4%, 28% ± 2%, and 19.55% ± 3.1%). In addition, in silico programs showed that the K211 somatic mutation was damaging. To the best of our knowledge, this study is the first to investigate K211 somatic mutations of the bovine PRNP gene that are associated with potential BSE progression.
Collapse
|
5
|
Nirale P, Paul A, Yadav KS. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer's, Parkinson's and Prion's. Life Sci 2020; 245:117394. [PMID: 32017870 DOI: 10.1016/j.lfs.2020.117394] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases need the drugs to be delivered right inside the brain to maximizing the therapeutic effects. This can be achieved by use of novel targeted delivery systems such as nanoemulsions. Nanoemulsions (NE) are nano-sized emulsions that are manufactured for enhancing the delivery of drugs to the targeted site and minimize adverse effects and toxic reactions. Looking into the advanced pharmaceutical applications of NE, the present review gives an insight to the understanding of the application of NE in NDs like AD, PD and Prion's disease. The review also touches upon the pathophysiology of these ND diseases to have a clear understanding of the molecular aspects of the disease. Finally, the review sets a standpoint of nanoemulsion's significance in the treatment therapy of ND besides the drawbacks associated with the current drug therapy in NDs.
Collapse
Affiliation(s)
- Prabhuti Nirale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India
| | - Ankita Paul
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Deemed to be University, Mumbai 400 056, India.
| |
Collapse
|