1
|
McMinn BR, Korajkic A, Kelleher J, Diedrich A, Pemberton A, Willis JR, Sivaganesan M, Shireman B, Doyle A, Shanks OC. Quantitative fecal pollution assessment with bacterial, viral, and molecular methods in small stream tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175740. [PMID: 39181252 PMCID: PMC11462285 DOI: 10.1016/j.scitotenv.2024.175740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Stream water quality can be impacted by a myriad of fecal pollution sources and waste management practices. Identifying origins of fecal contamination can be challenging, especially in high order streams where water samples are influenced by pollution from large drainage areas. Strategic monitoring of tributaries can be an effective strategy to identify conditions that influence local water quality. Water quality is assessed using fecal indicator bacteria (FIB); however, FIB cannot differentiate sources of fecal contamination nor indicate the presence of disease-causing viruses. Under different land use scenarios, three small stream catchments were investigated under 'wet' and 'dry' conditions (Scenario 1: heavy residential; Scenario 2: rural residential; and Scenario 3: undeveloped/agricultural). To identify fecal pollution trends, host-associated genetic targets HF183/BacR287 (human), Rum2Bac (ruminant), GFD (avian), and DG3 (canine) were analyzed along with FIB (Escherichia coli and enterococci), viral indicators (somatic and F+ coliphage), six general water quality parameters, and local rainfall. Levels of E. coli exceeded single sample maximum limits (235 CFU/100 mL) in 70.7 % of samples, enterococci (70 CFU/100 mL) in 100 % of samples, and somatic coliphage exceeded advisory thresholds (600 PFU/L) in 34.1 % of samples. The detection frequency for the human-associated genetic marker was highest in Scenario 3 (50 % of samples) followed by Scenario 2 (46 %), while the ruminant-associated marker was most prevalent in Scenario 1 (64 %). Due to the high proportion of qPCR-based measurements below the limit of quantification, a Bayesian data analysis approach was applied to investigate links between host-associated genetic marker occurrence with that of rainfall and fecal indicator levels. Multiple trends associated with small stream monitoring were revealed, emphasizing the role of rainfall, the utility of fecal source information to improve water quality management. And furthermore, water quality monitoring with bacterial or viral methodologies can alter the interpretation of fecal pollution sources in impaired waters.
Collapse
Affiliation(s)
- Brian R McMinn
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Asja Korajkic
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adam Diedrich
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin Pemberton
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Jessica R Willis
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Mano Sivaganesan
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Brooke Shireman
- Sanitation District No. 1 of Northern Kentucky, 1045 Eaton Drive, Fort Wright, KY 41017, United States
| | - Andrew Doyle
- Sanitation District No. 1 of Northern Kentucky, 1045 Eaton Drive, Fort Wright, KY 41017, United States
| | - Orin C Shanks
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| |
Collapse
|
2
|
Shanks OC, Diedrich A, Sivaganesan M, Willis JR, Sharifi A. Quantitative fecal source characterization of urban municipal storm sewer system outfall 'wet' and 'dry' weather discharges. WATER RESEARCH 2024; 259:121857. [PMID: 38851116 DOI: 10.1016/j.watres.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Urban areas are built environments containing substantial amounts of impervious surfaces (e.g., streets, sidewalks, roof tops). These areas often include elaborately engineered drainage networks designed to collect, transport, and discharge untreated stormwater into local surface waters. When left uncontrolled, these discharges may contain unsafe levels of fecal waste from sources such as sanitary sewage and wildlife even under dry weather conditions. This study evaluates paired measurements of host-associated genetic markers (log10 copies per reaction) indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal sources, 12-hour cumulative precipitation (mm), four catchment land use metrics determined by global information system (GIS) mapping, and Escherichia coli (MPN/100 ml) from seven municipal separate storm sewer system outfall locations situated at the southern portion of the Anacostia River Watershed (District of Columbia, U.S.A.). A total of 231 discharge samples were collected twice per month (n = 24 sampling days) and after rain events (n = 9) over a 13-month period. Approximately 50 % of samples (n = 116) were impaired, exceeding the local E. coli single sample maximum of 2.613 log10 MPN/100 ml. Genetic quality controls indicated the absence of amplification inhibition in 97.8 % of samples, however 14.7 % (n = 34) samples showed bias in DNA recovery. Of eligible samples, quantifiable levels were observed for avian (84.1 %), human (57.4 % for HF183/BacR287 and 40 % for HumM2), canine (46.7 %), and ruminant (15.9 %) host-associated genetic markers. Potential links between paired measurements are explored with a recently developed Bayesian qPCR censored data analysis approach. Findings indicate that human, pet, and urban wildlife all contribute to storm outfall discharge water quality in the District of Columbia, but pollutant source contributions vary based on 'wet' and 'dry' conditions and catchment land use, demonstrating that genetic-based fecal source identification methods combined with GIS land use mapping can complement routine E. coli monitoring to improve stormwater management in urban areas.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Amirreza Sharifi
- Department of Energy and Environment, 1200 First St NE, Washington, D.C., USA
| |
Collapse
|
3
|
Sivaganesan M, Willis JR, Diedrich A, Shanks OC. A fecal score approximation model for analysis of real-time quantitative PCR fecal source identification measurements. WATER RESEARCH 2024; 255:121482. [PMID: 38598887 DOI: 10.1016/j.watres.2024.121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024]
Abstract
Numerous qPCR-based methods are available to estimate the concentration of fecal pollution sources in surface waters. However, qPCR fecal source identification data sets often include a high proportion of non-detections (reactions failing to attain a prespecified minimal signal intensity for detection) and measurements below the assay lower limit of quantification (minimal signal intensity required to estimate target concentration), making it challenging to interpret results in a quantitative manner while accounting for error. In response, a Bayesian statistic based Fecal Score (FS) approach was developed that estimates the weighted average concentration of a fecal source identification genetic marker across a defined group of samples, mathematically incorporating qPCR measurements from all samples. Yet, implementation is technically demanding and computationally intensive requiring specialized training, the use of expert software, and access to high performance computing. To address these limitations, this study reports a novel approximation model for FS determination based on a frequentist approach. The performance of the Bayesian and Frequentist models are compared using fecal source identification qPCR data representative of different 'censored' data scenarios from a recently published study focusing on the impact of stormwater discharge in urban streams. In addition, data set eligibility recommendations for the responsible use of these models are presented. Findings indicate that the Frequentist model can generate similar average concentrations and uncertainty estimates for FS, compared to the original Bayesian approach. The Frequentist model should make calculations less computationally and technically intensive, allowing for the development of easier to use data analysis tools for fecal source identification applications.
Collapse
Affiliation(s)
- Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| |
Collapse
|
4
|
Diedrich A, Sivaganesan M, Willis JR, Sharifi A, Shanks OC. Genetic fecal source identification in urban streams impacted by municipal separate storm sewer system discharges. PLoS One 2023; 18:e0278548. [PMID: 36701383 PMCID: PMC9879488 DOI: 10.1371/journal.pone.0278548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 01/27/2023] Open
Abstract
Municipal stormwater systems are designed to collect, transport, and discharge precipitation from a defined catchment area into local surface waters. However, these discharges may contain unsafe levels of fecal waste. Paired measurements of Escherichia coli, precipitation, three land use metrics determined by geographic information system (GIS) mapping, and host-associated genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), dog (DG3), and avian (GFD) fecal sources were assessed in 231 urban stream samples impacted by two or more municipal stormwater outfalls. Receiving water samples were collected twice per month (n = 24) and after rain events (n = 9) from seven headwaters of the Anacostia River in the District of Columbia (United States) exhibiting a gradient of impervious surface, residential, and park surface areas. Almost 50% of stream samples (n = 103) were impaired, exceeding the local E. coli single sample maximum assessment level (410 MPN/100 ml). Fecal scores (average log10 copies per 100 ml) were determined to prioritize sites by pollution source and to evaluate potential links with land use, rainfall, and E. coli levels using a recently developed censored data analysis approach. Dog, ruminant, and avian fecal scores were almost always significantly increased after rain or when E. coli levels exceeded the local benchmark. Human fecal pollution trends showed the greatest variability with detections ranging from 9.1% to 96.7% across sites. Avian fecal scores exhibited the closest connection to land use, significantly increasing in catchments with larger residential areas after rain events (p = 0.038; R2 = 0.62). Overall, results demonstrate that combining genetic fecal source identification methods with GIS mapping complements routine E. coli monitoring to improve management of urban streams impacted by stormwater outfalls.
Collapse
Affiliation(s)
- Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Jessica R. Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Amirreza Sharifi
- Department of Energy and Environment, Government of the District of Columbia, Washington, DC, United States of America
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gerrity D, Papp K, Dickenson E, Ejjada M, Marti E, Quinones O, Sarria M, Thompson K, Trenholm RA. Characterizing the chemical and microbial fingerprint of unsheltered homelessness in an urban watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156714. [PMID: 35709998 DOI: 10.1016/j.scitotenv.2022.156714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Unsheltered homelessness is rapidly becoming a critical issue in many cities worldwide. The worsening situation not only highlights the socioeconomic plight, but it also raises awareness of ancillary issues such as the potential implications for urban water quality. The objective of this study was to simultaneously leverage diverse source tracking tools to develop a chemical and microbial fingerprint describing the relative contribution of direct human inputs into Las Vegas' tributary washes. By evaluating a wide range of urban water matrices using general water quality parameters, fecal indicator bacteria (FIB), human-associated microbial markers [e.g., HF183, crAssphage, and pepper mild mottle virus (PMMoV)], 16S rRNA gene sequencing data, and concentrations of 52 anthropogenic trace organic compounds (TOrCs), this study was able to differentiate principal sources of these constituents, including contributions from unsheltered homelessness. For example, HF183 (31% vs. 0%), crAssphage (61% vs. 5%), and PMMoV (72% vs. 55%) were more frequently detected in tributary washes with higher homeless census counts vs. 'control' tributary washes. Illicit drugs or their metabolites (e.g., heroin, acetylmorphine, amphetamine, and cocaine) and select TOrCs (e.g., acetaminophen, caffeine, ibuprofen, and naproxen) were also detected more frequently and at higher concentrations in the more anthropogenically-impacted washes. These data can be used to raise awareness of the shared interests between the broader community and those who are experiencing homelessness, notably the importance of protecting environmental health and water quality. Ultimately, this may lead to more rapid adoption of proven strategies for achieving functional zero homelessness, or at least additional resources for unsheltered individuals.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States.
| | - Katerina Papp
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Meena Ejjada
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Erica Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Oscar Quinones
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Mayra Sarria
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, P.O. Box 454015, Las Vegas, NV 89154-4015, United States
| | - Kyle Thompson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; Carollo Engineers, 8911 N. Capital of Texas Hwy, Austin, TX 78759, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
6
|
Willis JR, Sivaganesan M, Haugland RA, Kralj J, Servetas S, Hunter ME, Jackson SA, Shanks OC. Performance of NIST SRM® 2917 with 13 recreational water quality monitoring qPCR assays. WATER RESEARCH 2022; 212:118114. [PMID: 35091220 PMCID: PMC10786215 DOI: 10.1016/j.watres.2022.118114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fecal pollution remains a significant challenge for recreational water quality management worldwide. In response, there is a growing interest in the use of real-time quantitative PCR (qPCR) methods to achieve same-day notification of recreational water quality and associated public health risk as well as to characterize fecal pollution sources for targeted mitigation. However, successful widespread implementation of these technologies requires the development of and access to a high-quality standard control material. Here, we report a single laboratory qPCR performance assessment of the National Institute of Standards and Technology Standard Reference Material 2917 (NIST SRM® 2917), a linearized plasmid DNA construct that functions with 13 recreational water quality qPCR assays. Performance experiments indicate the generation of standard curves with amplification efficiencies ranging from 0.95 ± 0.006 to 0.99 ± 0.008 and coefficient of determination values (R2) ≥ 0.980. Regardless of qPCR assay, variability in repeated measurements at each dilution level were very low (quantification threshold standard deviations ≤ 0.657) and exhibited a heteroscedastic trend characteristic of qPCR standard curves. The influence of a yeast carrier tRNA added to the standard control material buffer was also investigated. Findings demonstrated that NIST SRM® 2917 functions with all qPCR methods and suggests that the future use of this control material by scientists and water quality managers should help reduce variability in concentration estimates and make results more consistent between laboratories.
Collapse
Affiliation(s)
- Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Richard A Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jason Kralj
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Stephanie Servetas
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Monique E Hunter
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Scott A Jackson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Complex Microbial Systems Group, Gaithersburg, MD, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Shahin SA, Keevy H, Dada AC, Gyawali P, Sherchan SP. Incidence of human associated HF183 Bacteroides marker and E. coli levels in New Orleans Canals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150356. [PMID: 34563901 DOI: 10.1016/j.scitotenv.2021.150356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
With a focus on five sites in an impaired, densely populated area in the New Orleans area, we investigated the temporal and spatial variability of standard FIB and a marker of human-associated pollution (Bacteroides HF183). With all sites combined, only a weak positive correlation (r = 0.345; p = 0.001) was observed between E. coli and HF183. Also, specific conductivity (r = - 0.374; p < 0.0001) and dissolved oxygen (r = - 0.390; p < 0.0001) were observed to show a weak moderate correlation with E. coli. These correlations increased to moderately negative when HF183 was correlated with specific conductivity (r = - 0.448; p < 0.0001) and dissolved oxygen (r = - 0.455; p < 0.0001). E. coli contamination was generally highest at the sites in the canal that are situated in the most densely populated part of the watershed while HF183 was frequently detected across all sites. E. coli concentrations were significantly higher (p < 0.05) when HF183 was present. HF183 was detected at significantly higher concentrations in samples that exceeded the EPA water quality standard (WQS) than those that did not (p < 0.05). Dissolved oxygen and specific conductivity were significantly lower when E. coli WQS was exceeded or when HF183 was present (p < 0.05). Rainfall impacted E. coli concentrations and HF183 differently at the study sites. While HF183 and E. coli concentrations levels were significantly higher (p < 0.05) if the days prior to sampling had been wet, the frequency of detection of HF183 was unimpacted, as comparable detection rates were recorded during wet and dry weather conditions. Without testing for HF183, it would have been assumed, based on testing for E. coli alone, that human fecal pollution was only associated with densely populated areas and rainfall events. E. coli alone may not be an effective indicator of sewage pollution at the study sites across all weather conditions and may need to be complemented with HF183 enumeration to optimize human fecal pollution identification and management at the watershed level.
Collapse
Affiliation(s)
- Shalina A Shahin
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Helen Keevy
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | | | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd, Porirua, 5240, New Zealand
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Linke RB, Zeki S, Mayer R, Keiblinger K, Savio D, Kirschner AKT, Reischer GH, Mach RL, Sommer R, Farnleitner AH. Identifying Inorganic Turbidity in Water Samples as Potential Loss Factor During Nucleic Acid Extraction: Implications for Molecular Fecal Pollution Diagnostics and Source Tracking. Front Microbiol 2021; 12:660566. [PMID: 34745021 PMCID: PMC8565874 DOI: 10.3389/fmicb.2021.660566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g., adhesion of DNA to the sample matrix, inefficient precipitation of DNA, pipetting errors and (partial) loss of the DNA pellet during DNA isolation), quality control is essential at all processing levels. In soil microbiology, particular attention has been paid to the inorganic component of the sample matrix affecting DNA extractability. In water quality testing, however, this aspect has mostly been neglected so far, although it is conceivable that these mechanisms have a similar impact. The present study was therefore dedicated to investigate possible matrix effects on results of water quality analysis. Field testing in an aquatic environment with pronounced chemo-physical gradients [total suspended solids (TSS), inorganic turbidity, total organic carbon (TOC), and conductivity] indicated a negative association between DNA extractability (using a standard phenol/chloroform extraction procedure) and turbidity (spearman ρ = −0.72, p < 0.001, n = 21). Further detailed laboratory experiments on sediment suspensions confirmed the hypothesis of inorganic turbidity being the main driver for reduced DNA extractability. The observed effects, as known from soil samples, were also indicated to result from competitive effects for free charges on clay minerals, leading to adsorption of DNA to these inorganic particles. A protocol modification by supplementing the extraction buffer with salmon sperm DNA, to coat charged surfaces prior to cell lysis, was then applied on environmental water samples and compared to the standard protocol. At sites characterized by high inorganic turbidity, DNA extractability was significantly improved or made possible in the first place by applying the adapted protocol. This became apparent from intestinal enterococci and microbial source tracking (MST)-marker levels measured by quantitative polymerase chain reaction (qPCR) (100 to 10,000-fold median increase in target concentrations). The present study emphasizes the need to consider inorganic turbidity as a potential loss factor in DNA extraction from water-matrices. Negligence of these effects can lead to a massive bias, by up to several orders of magnitude, in the results of molecular MST and fecal pollution diagnostics.
Collapse
Affiliation(s)
- Rita B Linke
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Sibel Zeki
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - René Mayer
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Katharina Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Domenico Savio
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.,Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg H Reischer
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Research Area Molecular Diagnostics, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria
| | - Robert L Mach
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Regina Sommer
- Unit of Water Microbiology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas H Farnleitner
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
9
|
Zimmer-Faust AG, Steele JA, Xiong X, Staley C, Griffith M, Sadowsky MJ, Diaz M, Griffith JF. A Combined Digital PCR and Next Generation DNA-Sequencing Based Approach for Tracking Nearshore Pollutant Dynamics Along the Southwest United States/Mexico Border. Front Microbiol 2021; 12:674214. [PMID: 34421839 PMCID: PMC8377738 DOI: 10.3389/fmicb.2021.674214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Ocean currents, multiple fecal bacteria input sources, and jurisdictional boundaries can complicate pollution source tracking and associated mitigation and management efforts within the nearshore coastal environment. In this study, multiple microbial source tracking tools were employed to characterize the impact and reach of an ocean wastewater treatment facility discharge in Mexico northward along the coast and across the Southwest United States- Mexico Border. Water samples were evaluated for fecal indicator bacteria (FIB), Enterococcus by culture-based methods, and human-associated genetic marker (HF183) and Enterococcus by droplet digital polymerase chain reaction (ddPCR). In addition, 16S rRNA gene sequence analysis was performed and the SourceTracker algorithm was used to characterize the bacterial community of the wastewater treatment plume and its contribution to beach waters. Sampling dates were chosen based on ocean conditions associated with northern currents. Evidence of a gradient in human fecal pollution that extended north from the wastewater discharge across the United States/Mexico border from the point source was observed using human-associated genetic markers and microbial community analysis. The spatial extent of fecal contamination observed was largely dependent on swell and ocean conditions. These findings demonstrate the utility of a combination of molecular tools for understanding and tracking specific pollutant sources in dynamic coastal water environments.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Xianyi Xiong
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Madison Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Margarita Diaz
- Proyecto Fronterizo de Educación Ambiental, A.C., Tijuana, Mexico
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| |
Collapse
|
10
|
Li X, Kelty CA, Sivaganesan M, Shanks OC. Variable fecal source prioritization in recreational waters routinely monitored with viral and bacterial general indicators. WATER RESEARCH 2021; 192:116845. [PMID: 33508720 PMCID: PMC8186395 DOI: 10.1016/j.watres.2021.116845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Somatic and F+ coliphage methods are under consideration as potential routine surface water quality monitoring tools to identify unsafe levels of fecal pollution in recreational waters. However, little is known about the cooccurrence of these virus-based fecal indicators and host-associated genetic markers used to prioritize key pollution sources for remediation. In this study, paired measurements of cultivated coliphage (somatic and F+) and bacterial (E. coli and enterococci) general fecal indicators and genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal pollution sources were assessed in 365 water samples collected from six Great Lakes Basin beach and river sites over a 15-week recreational season. Water samples were organized into groups based on defined viral and bacterial fecal indicator water quality thresholds and average log10 host-associated genetic marker fecal score ratios were estimated to compare pollutant source inferences based on variable routine water quality monitoring practices. Eligible log10 fecal score ratios ranged from -0.051 (F+ coliphage, GFD) to 2.08 (enterococci, Rum2Bac). Using a fecal score ratio approach, findings suggest that general fecal indicator selection for routine water quality monitoring can influence the interpretation of host-associated genetic marker measurements, in some cases, prioritizing different pollutant sources for remediation. Variable trends were also observed between Great Lake beach and river sites suggesting disparate management practices may be useful for each water type.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Brumfield KD, Cotruvo JA, Shanks OC, Sivaganesan M, Hey J, Hasan NA, Huq A, Colwell RR, Leddy MB. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. FRONTIERS IN WATER 2021; 3:626849. [PMID: 34263162 PMCID: PMC8274573 DOI: 10.3389/frwa.2021.626849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Jessica Hey
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
- CosmosID Inc., Rockville, MD, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| |
Collapse
|
12
|
Hart JD, Blackwood AD, Noble RT. Examining coastal dynamics and recreational water quality by quantifying multiple sewage specific markers in a North Carolina estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141124. [PMID: 32795790 DOI: 10.1016/j.scitotenv.2020.141124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Fecal contamination is observed downstream of municipal separate storm sewer systems in coastal North Carolina. While it is well accepted that wet weather contributes to this phenomenon, less is understood about the contribution of the complex hydrology in this low-lying coastal plain. A quantitative microbial assessment was conducted in Beaufort, North Carolina to identify trends and potential sources of fecal contamination in stormwater receiving waters. Fecal indicator concentrations were significantly higher in receiving water downstream of a tidally submerged outfall compared to an outfall that was permanently submerged (p < 0.001), though tidal height was not predictive of human-specific microbial source tracking (MST) marker concentrations at the tidally submerged site. Short-term rainfall (i.e. <12 h) was predictive of E. coli, Enterococcus spp., and human-specific MST marker concentrations (Fecal Bacteroides, BacHum, and HF183) in receiving waters. The strong correlation between 12-hr antecedent rainfall and Enterococcus spp. (r = 0.57, p < 0.001, n = 92) suggests a predictive model could be developed based on rainfall to communicate risk for bathers. Additional molecular marker data indicates that the delivery of fecal sources is complex and highly variable, likely due to the influence of tidal influx (saltwater intrusion from the estuary) into the low-lying stormwater pipes. In particular, elevated MST marker concentrations (up to 2.56 × 104 gene copies HF183/mL) were observed in standing water near surcharging street storm drain. These data are being used to establish a baseline for stormwater dynamics prior to dramatic rainfall in 2018 and to characterize the interaction between complex stormwater dynamics and water quality impairment in coastal NC.
Collapse
Affiliation(s)
- Justin D Hart
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America; Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - A Denene Blackwood
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America
| | - Rachel T Noble
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America; Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America.
| |
Collapse
|
13
|
Jennings WC, Gálvez-Arango E, Prieto AL, Boehm AB. CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators. WATER RESEARCH X 2020; 9:100071. [PMID: 33083778 PMCID: PMC7552103 DOI: 10.1016/j.wroa.2020.100071] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 05/12/2023]
Abstract
Anthropogenic fecal pollution in urban waterbodies can promote the spread of waterborne disease. The objective of this study was to test crAssphage, a novel viral human fecal marker not previously applied for fecal source tracking in Latin America, as a fecal pollution marker in an urban river in Chile. Human fecal markers crAssphage CPQ_064 and Bacteroides HF183, the human pathogen norovirus GII, and culturable fecal indicator bacteria (FIB) were quantified at six locations spanning reaches of the Mapocho River from upstream to downstream of Santiago, as well as in repeated sub-daily frequency samples at two urban locations. Norovirus showed positive correlation trends with crAssphage (τ = 0.57, p = 0.06) and HF183 (τ = 0.64, p = 0.03) in river water, but not with E. coli or enterococci. CrAssphage and HF183 concentrations were strongly linearly related (slope = 0.97, p < 0.001). Chlorinated wastewater effluent was an important source of norovirus GII genes to the Mapocho. Precipitation showed non-significant positive relationships with human and general fecal indicators. Concentrations of crAssphage and HF183 in untreated sewage were 8.35 and 8.07 log10 copy/100 ml, respectively. Preliminary specificity testing did not detect crAssphage or HF183 in bird or dog feces, which are predominant non-human fecal sources in the urban Mapocho watershed. This study is the first to test crAssphage for microbial source tracking in Latin America, provides insight into fecal pollution dynamics in a highly engineered natural system, and indicates river reaches where exposure to human fecal pollution may pose a public health risk.
Collapse
Affiliation(s)
- Wiley C. Jennings
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Ana L. Prieto
- Departamento de Ingeniería Civil, Universidad de Chile, Av. Blanco Encalada 2002, 3er Piso, Santiago, Chile
| | - Alexandria B. Boehm
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
- Corresponding author.
| |
Collapse
|
14
|
Crank K, Li X, North D, Ferraro GB, Iaconelli M, Mancini P, La Rosa G, Bibby K. CrAssphage abundance and correlation with molecular viral markers in Italian wastewater. WATER RESEARCH 2020; 184:116161. [PMID: 32810770 DOI: 10.1016/j.watres.2020.116161] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 05/18/2023]
Abstract
Current fecal indicators for environmental health monitoring are primarily based on fecal indicator bacteria (FIB) which do not accurately represent viral pathogens. There is a need for highly abundant, human-associated viral fecal indicators to represent viral pathogens in sewage-contaminated water. In the present study, we evaluate the abundance of the emerging viral fecal indicator crAssphage in 156 Italian wastewater samples collected between 2014 and 2018. Samples were collected using two separate viral concentration methods, glycine-CF and PEG-dextran and qPCR assays were run for crAssphage (CPQ56) and Human Polyomavirus (HPyV) and endpoint PCR assays were run for Human Bocavirus (HBoc) and Hepatitis E Virus (HepE). CrAssphage was detected in 96% of samples and no statistically significant difference was observed in crAssphage abundance between concentration methods (p = 0.39). CrAssphage concentrations also did not correlate with location (latitude) or size (load and capacity) of the wastewater treatment plant. HPyV detection rates with the glycine-CF and PEG-dextran methods were 64% and 100%, respectively, and the concentrations of HPyV were statistically significantly influenced by the concentration method (p < 0.0001). CrAssphage was measured at significantly higher concentrations than HPyV for both concentration methods (p < 0.0001). The observed concentration ranges were 3.84-7.29 log10GC/100 mL for crAssphage and 3.45-5.17 log10GC/100 mL for HPyV. There was a strong positive correlation between crAssphage and HPyV abundance for both concentration methods; however, the slope of the correlation depended on the concentration method. CrAssphage presence correlated with the presence of HBoc in samples concentrated with glycine-CF, but did not correlate with the presence of HBoc concentrated with the PEG-dextran method or with the presence of HepE. Overall, these results demonstrate that crAssphage is an abundant viral fecal indicator in wastewater with statistically significant correlation with human viral pathogens (e.g., HPyV) and viral concentration methods influence the interpretation of fecal viral indicator detection.
Collapse
Affiliation(s)
- Katherine Crank
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xiang Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Devin North
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
15
|
Shrestha A, Kelty CA, Sivaganesan M, Shanks OC, Dorevitch S. Fecal pollution source characterization at non-point source impacted beaches under dry and wet weather conditions. WATER RESEARCH 2020; 182:116014. [PMID: 32622131 PMCID: PMC8220998 DOI: 10.1016/j.watres.2020.116014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Though Lake Michigan beaches in Chicago are not impacted by stormwater or wastewater outfalls, several of those beaches often exceed USEPA Beach Action Values (BAVs). We investigated the role of microbial source tracking (MST) as a complement to routine beach monitoring at Chicago beaches. In summer 2016, water samples from nine Chicago beaches were analyzed for E. coli by culture and enterococci by qPCR. A total of 195 archived samples were then tested for human (HF183/BacR287, HumM2), canine (DG3, DG37), and avian (GFD) microbial source tracking (MST) markers. Associations between MST and general fecal indicator bacteria (FIB) measures were evaluated and stratified based on wet and dry weather definitions. Among the 195 samples, HF183/BacR287 was quantifiable in 4%, HumM2 in 1%, DG3 in 6%, DG37 in 2%, and GFD in 23%. The one beach with a dog area was far more likely to have DG3 present in the quantifiable range than other beaches. Exceedance of general FIB BAVs increased the odds of human, dog and avian marker detection. MST marker weighted-average fecal scores for DG3 was 2.4 times, DG37 was 2.1 times, and GFD was 1.6 times higher during wet compared to dry weather conditions. HF183/BacR287 weighted-average fecal scores were not associated with precipitation. Associations between FIB BAV exceedance and MST marker detection were generally stronger in wet weather. Incorporating MST testing into routine beach water monitoring can provide information that beach managers can use when developing protection plans for beaches not impacted by point sources.
Collapse
Affiliation(s)
- Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA.
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Samuel Dorevitch
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA; Institute for Environmental Science and Policy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
17
|
Rudko SP, Reimink RL, Peter B, White J, Hanington PC. Democratizing water monitoring: Implementation of a community-based qPCR monitoring program for recreational water hazards. PLoS One 2020; 15:e0229701. [PMID: 32401786 PMCID: PMC7219769 DOI: 10.1371/journal.pone.0229701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Recreational water monitoring can be challenging due to the highly variable nature of pathogens and indicator concentrations, the myriad of potential biological hazards to measure for, and numerous access points, both official and unofficial, that are used for recreation. The aim of this study was to develop, deploy, and assess the effectiveness of a quantitative polymerase chain reaction (qPCR) community-based monitoring (CBM) program for the assessment of bacterial and parasitic hazards in recreational water. This study developed methodologies for performing qPCR ‘in the field,’ then engaged with water management and monitoring groups and tested the method in a real-world implementation study to evaluate the accuracy of CBM using qPCR both quantitatively and qualitatively. This study found high reproducibility between qPCR results performed by non-expert field users and expert laboratory results, suggesting that qPCR as a methodology could be amenable to a CBM program.
Collapse
Affiliation(s)
- Sydney P. Rudko
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald L. Reimink
- Office of Campus Ministries, Hope College, Holland, Michigan, United States of America
- Freshwater Solutions, LLC, Traverse City, Michigan, United States of America
| | - Bradley Peter
- Alberta Lake Management Society, Edmonton, Alberta, Canada
| | - Jay White
- Aquality Environmental Consulting Ltd., Edmonton, Alberta, Canada
| | - Patrick C. Hanington
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|