1
|
Kyser AJ, Mahmoud MY, Fotouh B, Patel R, Armstrong C, Aagard M, Rush I, Lewis W, Lewis A, Frieboes HB. Sustained dual delivery of metronidazole and viable Lactobacillus crispatus from 3D-printed silicone shells. BIOMATERIALS ADVANCES 2024; 165:214005. [PMID: 39208497 PMCID: PMC11443601 DOI: 10.1016/j.bioadv.2024.214005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bacterial vaginosis (BV) is an imbalance of the vaginal microbiome in which there are limited lactobacilli and an overgrowth of anaerobic and fastidious bacteria such as Gardnerella. The propensity for BV recurrence is high, and therapies involving multiple treatment modalities are emerging to meet this need. However, current treatments requiring frequent therapeutic administration are challenging for patients and impact user compliance. Three-dimensional (3D)-printing offers a novel alternative to customize platforms to facilitate sustained therapeutic delivery to the vaginal tract. This study designed a novel vehicle intended for dual sustained delivery of both antibiotic and probiotic. 3D-printed compartmental scaffolds consisting of an antibiotic-containing silicone shell and a core containing probiotic Lactobacillus were developed with multiple formulations including biomaterials sodium alginate (SA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and kappa-carrageenan (KC). The vehicles were loaded with 50 μg of metronidazole/mg polymer and 5 × 107 CFU of L. crispatus/mg scaffold. Metronidazole-containing shells exhibited cumulative drug release of 324.2 ± 31.2 μg/mL after 14 days. Multiple polymeric formulations for the probiotic core demonstrated cumulative L. crispatus recovery of >5 × 107 CFU/mg scaffold during this timeframe. L. crispatus-loaded polymeric formulations exhibited ≥2 log CFU/mL reduction in free Gardnerella in the presence of VK2/E6E7 vaginal epithelial cells. As a first step towards the goal of facilitating patient compliance, this study demonstrates in vitro effect of a novel 3D-printed dual antibiotic and probiotic delivery platform to target BV.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Christy Armstrong
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marnie Aagard
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Isaiah Rush
- Department of Chemical Engineering, University of Dayton, Dayton, OH, USA
| | - Warren Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
2
|
Das S, Pradhan T, Panda SK, Behera AD, Kumari S, Mallick S. Bacterial biofilm-mediated environmental remediation: Navigating strategies to attain Sustainable Development Goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122745. [PMID: 39383746 DOI: 10.1016/j.jenvman.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Bacterial biofilm is a structured bacterial community enclosed within a three-dimensional polymeric matrix, governed by complex signaling pathways, including two-component systems, quorum sensing, and c-di-GMP, which regulate its development and resistance in challenging environments. The genetic configurations within biofilm empower bacteria to exhibit significant pollutant remediation abilities, offering a promising strategy to tackle diverse ecological challenges and expedite progress toward Sustainable Development Goals (SDGs). Biofilm-based technologies offer advantages such as high treatment efficiency, cost-effectiveness, and sustainability compared to conventional methods. They significantly contribute to agricultural improvement, soil fertility, nutrient cycling, and carbon sequestration, thereby supporting SDG 1 (No poverty), SDG 2 (Zero hunger), SDG 13 (Climate action), and SDG 15 (Life on land). In addition, biofilm facilitates the degradation of organic-inorganic pollutants from contaminated environments, aligning with SDG 6 (Clean water and sanitation) and SDG 14 (Life below water). Bacterial biofilm also has potential applications in industrial innovation, aligning SDG 7 (Affordable and clean energy), SDG 8 (Decent work and economic growth), and SDG 9 (Industry, innovation, and infrastructure). Besides, bacterial biofilm prevents several diseases, aligning with SDG 3 (Good health and well-being). Thus, bacterial biofilm-mediated remediation provides advanced opportunities for addressing environmental issues and progressing toward achieving the SDGs. This review explores the potential of bacterial biofilms in addressing soil pollution, wastewater, air quality improvement, and biodiversity conservation, emphasizing their critical role in promoting sustainable development.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Sourav Kumar Panda
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Abhaya Dayini Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| |
Collapse
|
3
|
Zhang Y, Tong Y, Wang K, Liang Q, Liu J, Zhang X, Ji X, Gao J, Zuo P, Dan M. Application of loofah and insects in a bio-trickling filter to relieve clogging. CHEMOSPHERE 2023; 317:137912. [PMID: 36681198 DOI: 10.1016/j.chemosphere.2023.137912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Bio-trickling filters (BTFs) use an inert filler to purify pollutants making them prone to clogging due to bacterial accumulation. To investigate the performance of a non-inert filler in BTF and its cooperation with insects to relieve clogging, a vertical BTF was constructed with a loofah/Pall ring/polydimethylsiloxane composite filler and selected bacteria to purify toluene. The BTF was started up within 17 d and restarted within 3 d after starvation for 12-16 d. Its average removal efficiency was >90% at steady state. The maximum elimination capacity of 86.4 g·(m3·h)-1 was obtained at a volume capacity of 96.2 g·(m3·h)-1. The introduction of holometabolous insects (Clogmia albipunctata) rapidly removed the biofilm and accelerated the degradation of the loofah, which alleviated clogging. Furthermore, confocal laser scanning microscope (CLSM) observations showed that the biofilm polysaccharides were difficult to remove, while lipids were readily lost. Analysis of microbial diversity over time and space revealed that the dominant bacterium, Comamonas, was replaced by diverse microflora with no obvious dominant genus. Insect introduction and loofah migration had little effect on the evolution of microflora. This study provides a promising approach to operating BTFs with less clogging.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yali Tong
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Kun Wang
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Quanming Liang
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Jieyu Liu
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Xiaoxi Zhang
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Xiaohui Ji
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Penglai Zuo
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China.
| | - Mo Dan
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| |
Collapse
|
4
|
Dou X, Liu J, Qi H, Li P, Lu S, Li J. Synergistic removal of m-xylene and its corresponding mechanism in a biotrickling filter. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Singh A, Pandey AK, Dubey SK. Genome sequencing and in silico analysis of isoprene degrading monooxygenase enzymes of Sphingobium sp. BHU LFT2. J Biomol Struct Dyn 2022; 41:3821-3834. [PMID: 35380094 DOI: 10.1080/07391102.2022.2057360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The whole genome sequencing of a novel isoprene degrading strain of Sphingobium sp. BHU LFT2, its in silico analysis for identifying and characterizing enzymes, especially isoprene monooxygenases (IsoMO), which initiate the degradation process, and in vitro validation with cell extract of optimal temperature and pH and analysis for utilizing isoprene as the preferential substrate, were conducted. The most efficient monooxygenase was identified through comparative analyses using molecular docking followed by molecular dynamics simulation approach. The in silico results revealed high thermostability for most of the monooxygenases. Most potent monooxygenase with locus ID JQK15_20300 exhibiting high sequence similarity with known monooxygenases of isoprene-degrading Rhodococcus sp. LB1 and SC4 strains was identified. Interaction energy of -17.25 kJ/mol for JQK15_20300 with isoprene, was almost similar as that analysed for above-mentioned similar known counterparts, was exhibited by the molecular docking. Molecular dynamic simulation of 100 ns and free energy analysis of JQK15_20300 in the complex with isoprene gave persistent interaction of isoprene with JQK15_20300 during the simulation with high average binding energy of -47.13 kJ/mol thus proving higher affinity of JQK15_20300 for isoprene. The study revealed that the highly efficient isoprene degrading strain of Sphingobium sp. BHU LFT2 having effective monooxygenase could be utilized for large-scale applications including detoxification of air contaminated with isoprene in closed working systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Singh
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Chen CY, Wang GH, Tsai CT, Tsai TH, Chung YC. Removal of toluene vapor in the absence and presence of a quorum-sensing molecule in a biotrickling filter and microbial composition shift. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:256-265. [PMID: 31662034 DOI: 10.1080/10934529.2019.1684120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Toluene is highly toxic and mutagenic, and it is generally used as an industrial solvent. Thus, toluene removal from air is necessary. To solve the problem of reducing high toluene concentrations with a short gas retention time (GRT), a quorum-sensing molecule [N-(3-oxododecanoyl)-L-homoserine lactone] (OHL) was added to a biotrickling filter (BTF). In this study, a BTF was used to treat synthetic and natural waste gases containing toluene. An extensive analysis was performed to understand the removal efficiency, removal characteristics, and bacterial community of the BTF. The addition of 20 μM OHL to the BTF significantly improved toluene removal, and more than 99.2% toluene removal was achieved at a GRT of 0.5 min when natural waste gas containing toluene (590-1020 ppm or 2.21-3.83 g m-3) was introduced. The maximum inlet load for toluene was 337.9 g m-3 h-1. Moreover, the BTF exhibited satisfactory adaptability to shock loading and shutdown operations. Pseudomonadaceae (33.0%) and Comamonadaceae (26.3%) were predominant bacteria in the system after a 98-day operation. These bacteria were responsible for toluene degradation. The optimal moisture content and low pressure drop for system operations demonstrated that the BTF was energy and cost efficient. Therefore, processing through a BTF with OHL is a favorable technique for toluene treatment.
Collapse
Affiliation(s)
- Chih-Yu Chen
- Department of Tourism and Leisure, Hsing Wu University, Taipei, Taiwan
| | - Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, China
| | - Cheng-Ta Tsai
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| |
Collapse
|